-
DCE0140 - CALCULO DIFERENCIAL E INTEGRAL III - M - Turma: 01 (2023.1)
Espaço euclidiano n-dimensional R^n. Coordenadas polares no R^2. Coordenadas cilíndricas e esféricas no R^3. Retas.
Descrição de planos no espaço R^3 através de vetor normal e através de combinações lineares de vetores geradores. Cilindros.
Em virtude de determinação da reitoria após o falecimento de um discente do curso de Medicina, não teremos aula.
Apresentação de funções vetoriais. Curvas parametrizadas. Justificativa para limites e derivadas de curvas parametrizadas. Exemplos de parametrizações.
Motivos de saúde.
Mais curvas parametrizadas. Epicicloide, helices, helice toroidal, etc.
Vetor tangente a uma curva. Reta tangente. Exemplos. Rotações em gráficos no plano.
Curvas parametrizadas no espaço. Exemplos. Revisão de funções periódicas e de operações com gráficos de funções reais: translações verticais e horizontais, dilatação ou compressão vertical e/ou horizontal.
Propriedades de derivação. Curvas diferenciáveis com comprimento constante. Exemplos. Introdução ao comprimento de arco.
Comprimento de arco de curva diferenciável. Comprimento de arco como parametro de uma curva. Reparametrização por comprimento de arco.
Aula para sanar dúvidas.
Vetor tangente unitário. Comentário sobre reparametrizações. Curvatura de uma curva. Exercícios.
Vetores normal unitário e binormal. Planos osculador, normal e retificador. Torção. Exercícios.
Aula de tira dúvidas.
Introdução. Considerações iniciais. Domínios. Curvas e superfícies de nível. Exemplos.
Limites e continuidade. Propriedades. Exemplos.
Derivadas parciais. Interpretação geométrica. Exemplos. Derivadas parciais de ordem superior.
Planos tangentes. Aproximações lineares. Exemplos.
Diferenciabilidade. Critérios práticos para funções diferenciáveis. Significado prático. Exemplos.
Regra da cadeia. Significado. Exemplos.
Aula de exercícios
Derivada direcional. Vetor gradiente. Propriedades. Exercícios.
Aula de exercícios.
Valores extremos. Exercícios.
Extremos relativos. Multiplicadores de Lagrange.
Exercícios.
Exercícios
Revisão de integrais de funções de uma variável real. Introdução às integrais duplas. Teorema de Fubini. Exemplos
Integrais duplas sobre regiões mais gerais. Exemplos.
Teorema de mudança de variáveis para integrais múltiplas. Aplicação para as integrais duplas. Exemplos.
Aplicações de integrais duplas.
Mudanças de variáveis: coordenadas polares.
Nenhum item foi encontrado
SIGAA | Superintendência de Tecnologia da Informação - STI/UFPI - (86) 3215-1124 | sigjb17.ufpi.br.instancia1 vSIGAA_3.12.1163 08/11/2024 00:31