Resumo: Previsões de carga são realizadas em função de valores passados, porém a presença de falhas e outliers, podem influenciar seu resultado. Os dados de carga possuem perfis típicos, tornando fundamental a separação dos mesmos em grupos, conforme seus perfis. Sendo assim, para uma previsão de carga satisfatória, a mesma deve ser precedida por filtragem e agrupamento do banco de dados. Essa pesquisa propõe um algoritmo de pré-processamento de curvas de carga, de um transformador de extra alta tensão instalado em uma subestação, suscetível à intempéries e peculiaridades do sistema elétrico. A primeira etapa do algoritmo, refere-se à filtragem dos dados, através de um processo iterativo, utilizando filtro de hampel, para correção das curvas de carga e pesquisa de defeitos remanescentes, empregando o sinal do detalhe oriundo do banco de filtros com Transformada Wavelet Discreta (TDW). Na segunda etapa, associada ao agrupamento, um processo iterativo realizou a redução das curvas de carga, através do sinal de aproximação do banco de filtros TDW, nos seus diversos níveis, seguido do agrupamento das mesmas curvas, aplicando o algoritmo k-means. Destacam-se os resultados de filtragem satisfatório com correções otimizadas, além do que o número curvas excluídas indicou anormalidades no sistema de medição. Os resultados mostraram que agrupamento resultante representa curvas de carga com tipologias bem definidas, associadas aos dias das semana, classe de carga, meses do ano e estações climáticas, apesar do referido agrupamento ter sido realizado sem supervisão, ou qualquer informação prévia fornecida ao algoritmo.