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Resumo

Nesse trabalho propomos duas versões do método ponto proximal para problemas em

quase-equilíbrio: Uma versão exata e outra inexata do método. Na versão exata, propo-

mos uma versão com regularização Bregman do método do ponto proximal, de modo

que estendemos o trabalho de Burachik e Kassay [4] para o contexto de quase equi-

líbrio.Enquanto na versão inexata, fazemos a extensão dos resultados obtidos por Santos

e Souza em [47], uma vez que utilizamos uma regularização mais geral que a utilizada no

respectivo trabalho. Além disso, apresentamos experimentos numéricos afim de ilustrar o

desempenho computacional das versões propostas. Por fim, no último capítulo apresen-

tamos uma aplicação de quase equilíbrio para o problema de duopólio através do modelo

de Cournot.

Palavras-chave: Método ponto proximal; problemas de quase-equilíbrio; distância de Breg-

man; problema de duopólio; modelo de Cournot.
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Abstract

In this work, we propose two versions of the proximal point method: an exact and an

inexact version of the method. In the exact version, we propose a Bregman regularized

version of the proximal point method, so we extend the work of Burachik and Cassay [4]

to the quasi-equilibrium context. In its inexact version, we extend the results obtained

by Santos and Souza in [47]. Furthermore, we present numerical experiments in order to

illustrate the computational performance of the proposed versions. Finally, in the last

chapter, we present a quasi-equilibrium application for the Cournot duopoly model.

Keywords: Proximal point method; quasi-equilibrium problems; Bregman distance; duopoly

problem; Cournot model.

vi



Contents

Resumo v

Abstract vi

Introduction 1

1 Basic Concepts 4

1.1 Convex Analysis Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Bregman distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Fejér and quasi-Fejér Convergence . . . . . . . . . . . . . . . . . . . . . . . 9

2 Equilibrium Problems 11

3 Quasi-Equilibrium Problems 18

3.1 Proximal point method (PPM) . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Quasi-Equilibrium Problems:Exact and Inexact Versions 27

4.1 Bregman regularized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.2 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Quasi-Equilibrium Problems: Inexact Versions . . . . . . . . . . . . . . . . 34

4.2.1 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Aplication to the Cournot model 55

5.1 The viability condition of the Cournot model as an EP . . . . . . . . . . . 55

5.2 Setting the fixed point condition of a QEP as a viability condition . . . . . 56

vii



Contents viii

5.3 Setting the equilibrium condition of a QEP . . . . . . . . . . . . . . . . . . 56

5.4 Application to the Cournot model of a duopoly . . . . . . . . . . . . . . . 58

5.4.1 A better formulation of the Nash-Cournot model as a QEP . . . . . 58

5.4.2 New viability conditions . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 The Cournot model as a QEP . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6 The advantages of a QEP formulation . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusion 63

Referências Bibliográficas 63



Introduction

In this work, we study An equilibrium problem, which we will denote by EP(f,X)

consists of finding a point x∗ ∈ X such that

f(x∗,y) ⩾ 0, ∀y ∈ X.

The set X ⊂ H is a non-empty, closed, convex set and H is a Hilbert space.Moreover,

f : X × X → R is called equilibrium bifunction. The bifunction f satisfies the following

properties:

Assumptions 1.

i) f(x, x) = 0 for all x ∈ X.

ii) f(·, ·) : X × X → R is jointly weakly continuous (its graph is weakly closed) in the

following sense: if x,y ∈ X are such that {xj} and {yj} weakly converge to x and y

respectively. Then f(xj,yj) converges in norm to f(x,y).

iii) f(x, ·) is convex for all x ∈ X.

iv) f is monotone, that is, f(x,y) + f(y, x) ⩽ 0 for all x,y ∈ X.

v) For any sequence {zn} ⊂ X with lim
n→+∞ ∥zn∥ = +∞, there exists u ∈ X and n0 ∈ N such

that f(zn,u) ⩽ 0 , for all n ⩾ n0.

We denote the solutions set by EP(f,X), we denote by SEP(f,X). We can associate

the dual equilibrium problem, which consists of finding a point y∗ ∈ X such that

f(x,y∗) ⩽ 0, ∀x ∈ X.

To the solution set of the dual equilibrium problem, we denote Sd
EP(f,X). The first

works in the field of equilibrium problems are attributed to Fan [14] and Nikaidô and

Isoda [36]. Currently, there are many works in the area of equilibrium problems and

1
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this area, in turn, has attracted the attention of many researchers. This fact is due to

the wide applicability of such problems in the most diverse areas, such as economics

and mathematics. Within mathematics, we can highlight scalar and vector optimization

problems, variational inequalities, saddle point problems, and Nash equilibrium problems.

See [3], [34], [38], [46].

The first work to relate the proximal point method to solving an equilibrium problem

was proposed Iusem and Sosa [25], in which they sought to solve an equilibrium problem

for a regularized function (EP(fk,X)) given by

fk(x,y) = f(x,y) + γk⟨x− xk,y− x⟩, (1)

and {γk} is a bounded positive auxiliary sequence. As in each iteration the solution of

a regularized equilibrium problem (called a subproblem) is important, both to a theo-

retical and computational point of view, establish convergence results assuming which

approximate solutions to the subproblems are calculated.

A problem that extends an equilibrium problem is the called quasi-equilibrium prob-

lems (QEP), Such a problem consists of finding a point x∗ ∈ C(x∗) such that

f(x∗,y) ⩾ 0, ∀ y ∈ C(x∗),

where C : X ⇒ X is a point-set map, i.e., it associates to each x ∈ X a closed, convex, non-

empty subset C(x) ⊂ X. Note that when C(x) ≡ X for all x ∈ X, the quasi-equilibrium

problem becomes the equilibrium problem. Quasi-equilibrium problems arise precisely

to fill a gap left by equilibrium problems, since some problems cannot be modeled as

equilibrium problems, but as quasi-equilibrium problems. As an example, we can cite

quasi-variational inequalities and generalized Nash games, among others. We suggest

reading [13], [18], [29], [46], [52],

One of the first works to propose an extension of (1) to quasi-equilibrium problems

was proposed by Santos e Souza [47]. In this work, we make an extension of the work done

in [47], where we propose three algorithms: In the first one, we use the Bregman distance

in substitution of the Euclidean norm, and for that, we use the following regularization:

fk(x
k+1,y) = f(xk+1,y) + γk⟨∇φ(xk+1) −∇φ(xk),y− xk+1⟩

where {γk} is a positive, bounded sequence and the function φ : H → R, called the

Bregman function, is a differentiable function that satisfies some regularization properties

. See that when φ(x) = ∥x∥2

2 we resume work [47].
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The other two proposed algorithms are inexact versions of the proximal point method,

where we initially study the convergence of the method using the regularized function:

fek(x,y) = f(x,y) + γk⟨x− xk,y− x⟩− ⟨ek,y− x⟩.

Again, {γk} is a bounded positive scalar sequence. In the above regularization, ek ∈ X∗

where X∗ represents the topological dual of X. For this regularization, we perform the

convergence analysis using two separate estimates for ek:

(E1) ∥ek∥ ⩽ ∥xk+1 − xk∥;

(E2) ∥xk+1 − xk − ek∥ ⩽ max
{
∥xk+1 − xk∥, ∥ek∥

}
.

In both cases, we obtained similar results regarding the convergence analysis.

In the second method, we will consider as the next iterate xk+1 ∈ X a point close

enough to the exact solution controlled by a summable sequence of error {εk}. While

the exact solution needs to find a point belonging to C(xk) which is a solution of the

equilibrium problem with the regularized bifunction fk, this inexact version takes as its

next iterate any point in an ε-neighborhood (not necessarily in C(xk)) of the exact solution

of the subproblem.

This work is divided as follows: In the first chapter, we bring some basic definitions and

results that will appear throughout the text; in Chapters 2 and 3, we address some results

on equilibrium and quasi-equilibrium problems. In Chapter 4, we study the proximal point

method, in which we propose three versions: The first one, in which we make use of the

Bregman Distance and the other two, where we propose inexact versions of the method

to solve quasi-equilibrium problems. In Chapter 5 we apply quasi-equilibrium problems

to the Cournout Model.



Chapter 1

Basic Concepts

In this chapter, we present some concepts, results, and notations that will be used through-

out this text. The results presented here are widely disseminated in the related literature,

and for this reason, we will not prove the results were. We will give the references in

which the reader can find such proofs. Let’s begginning by start by bringing some defini-

tions and results in convex analysis, later, we will approach some results about Bregman

distance, and finally Fejér and quasi-Fejér convergence.

1.1 Convex Analysis Elements

Definition 1. A set X ⊂ Rn is called a convex set if for any a,b ∈ X and λ ∈ [0, 1],

λa+ (1 − λ)b ∈ X.

Definition 2. Let X ⊂ Rn be a convex set and x̄ ∈ X. The normal cone at the point x̄

with respect to the set X is given by:

NX(x̄) = {d ∈ Rn|⟨d, x− x̄⟩ ⩽ 0,∀x ∈ X}.

The (orthogonal) projection of a point x ∈ Rn onto a set X ⊂ Rn is a point of X that

is closest to x. In the other words, a projection at x onto X is a global solution to the

problem.

min
y∈X

∥y− x∥.

Next, we present the famous projection theorem.

4
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Theorem 1. Let X ⊂ Rn be a convex and closed set. Then for all x ∈ Rn, the projection

of x onto X denoted by PX(x), exists and is unique. Moreover, x̄ = PX(x) if and only if

x̄ ∈ X, ⟨x− x̄,y− x̄⟩ ⩽ 0 ∀y ∈ X,

or equivalently, x̄ ∈ X, x− x̄ ∈ NX(x̄).

Proof: See [26, Theorem 3.3.32].

Definition 3. A function f : Rn → R is convex if its domain is a convex set and for all

x,y in its domain, and all λ ∈ [0, 1], we have

f(λx+ (1 − λ)y) ⩽ λf(x) + (1 − λ)f(y).

The following theorem provides a characterization of convex differentiable functions.

Theorem 2. Let Ω ⊂ Rn be a convex and open set and f : Ω → R be a differentiable

function on Ω. Then the properties are equivalent:

a) The function f is convex in Ω.

b) For every x ∈ Ω and every y ∈ Ω,

f(y) ⩾ f(x) + ⟨∇f(x),y− x⟩.

c) For every x ∈ Ω and every y ∈ Ω,

⟨∇f(y) −∇f(x),y− x⟩ ⩾ 0.

If f is two differentiable over Ω, the above properties are also equivalent to

d) The Hessian matrix of f is semi-definite positive at every point of Ω:

⟨Hess f(x) · d,d⟩ ⩾ 0 ∀ x ∈ Ω, ∀ d ∈ Rn.

Proof: See [26, Theorem 3.4.30].

Theorem 3. (Necessary and sufficient optimality conditions for a convex minimization

problem) Let X ⊂ Rn be a convex set and f : Ω → R be a convex and differentiable

function on the open set Ω containing X. Then x̄ is a minimizer of f in X if and only if

⟨∇f(x̄), x− x̄⟩ ⩾ 0, ∀ x ∈ X, (1.1)
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or equivalently,

−∇f(x̄) ∈ NX(x̄).

Moreover, the condition (1.1) is equivalent to

⟨∇f(x), x− x̄⟩ ⩾ 0 ∀ x ∈ X. (1.2)

If X is a closed set, (1.1) and (1.2) are also equivalent to the following condition:

x̄ = PX(x̄− α∇f(x̄)) for some α > 0.

Proof: See [26, Theorem 3.4.37].

So far, results have been presented for differentiable functions. The next results are

concerned with functions that are only convex.

Definition 4. Let f : Rn → R be a convex function. We say that y ∈ Rn is a subgradient

of f at the point x ∈ Rn if

f(z) ⩾ f(x) + ⟨y, z− x⟩ ∀ z ∈ Rn.

The set of all subgradients of f at x is called the subdifferential of f in x; we denote it by

∂f(x).

The next result deals with the optimality condition for minimizing a convex function in

a convex set and is used in works dealing with equilibrium and quasi-equilibrium problems.

Theorem 4. Let f : Rn → R be a convex function and X ⊂ Rn be a convex set. Then x̄

is a minimizer of f in X if and only if

∃y ∈ ∂f(x̄); ⟨y, x− x̄⟩ ⩾ 0, ∀x ∈ X,

or, equivalently,

0 ∈ ∂f(x̄) +NX(x̄).

Proof: See [26, Theorem 3.4.54].

Other definitions that appear frequently in works about equilibrium and quasi-equilibrium

are upper and lower semicontinuous and lower semicontinuous functions. Which we recall

below.

Definition 5. Let us say that f is upper semicontinuous at x0 if for every ε > 0 there

exists a neighborhood U of x0 such that f(x) < f(x0) + ε for all x ∈ U.
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Definition 6. A function is said to be lower semicontinuous at x0 if for every δ > 0 there

exists a neighborhood V of x0 such that f(x) > f(x0) − δ for all x ∈ V .

Remark 1. Clearly, a function is continuous at x0 if and only if it is both upper and

lower semicontinuous there.

1.2 Bregman distances

Let A ⊆ Rn be a closed and convex set with intA nonempty, where intA denotes the

interior of set A. Consider a function φ : Rn → R ∪ {+∞} strictly convex, proper and

lower semicontinuous with closed domain D := dom(φ) and continuously differentiable

on intA.

Definition 7. The Bregman distance associated to φ with zone A is given by

Dφ(x,y) =

 φ(x) −φ(y) − ⟨∇φ(y), x− y⟩, ∀ x ∈ A, ∀y ∈ intA

+∞, otherwise.

The following function are examples of Bregman distances.

Example 1. Consider the Bregman function φ(x) = 1
2 ||x||

2 and its respective Bregman

distance is given by

Dφ(x,y) =
1
2
||x− y||2,

with A = Rn. Indeed,

Dφ(x,y) = φ(x) −φ(y) − ⟨∇φ(y), x− y⟩

=
1
2
∥x∥2 −

1
2
∥y∥2 − ⟨y, x− y⟩

=
1
2
∥x∥2 − ∥y∥2 +

1
2
∥y∥2 − ⟨x− y,y⟩

=
1
2
∥x∥2 − ⟨y,y⟩+ 1

2
∥y∥2 − ⟨x− y,y⟩

=
1
2
∥x∥2 +

1
2
∥y∥2 − ⟨x− y+ y,y⟩

=
1
2
∥x∥2 − ⟨x,y⟩+ 1

2
∥y∥2

=
1
2
⟨x− y, x− y⟩

=
1
2
∥x− y∥2.
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Example 2. The Bregman function φ(x) = −
∑n

i∈I(x) log xi and its respective Bregman

distance

Dφ(x,y) =
n∑

i∈I(x)

(
log(yi/xi) +

xi

yi

− 1
)

with A = Rn
+, and I(x) = {i : xi > 0}. (This function is called Burg entropy ).

Indeed,

Dφ(x,y) = φ(x) −φ(y) − ⟨∇φ(y), x− y⟩

= −

n∑
i∈I(x)

log(xi) −

−

n∑
i∈I(x)

log(yi)

− ⟨− 1
yi

, xi − yi⟩

= −

n∑
i∈I(x)

log(xi) −

−

n∑
i∈I(x)

log(yi)

−

(
−
xi

yi

+ 1
)

=

n∑
i∈I(x)

log(yi) −

n∑
i∈I(x)

log(xi) +
xi

yi

− 1

=

n∑
i∈I(x)

(
log(yi/xi) +

xi

yi

− 1
)

.

Example 3. The Bregman function φ(x) =
∑n

i=1 xi log xi called Shannon entropy and

its respective Bregman distance

Dφ(x,y) =
n∑

i=1

[xi log(xi/yi) + yi − xi]

with A = Rn
+ known as Kullback-Leibler distance.

Indeed,

Dφ(x,y) = φ(x) −φ(y) − ⟨∇φ(y), x− y⟩

=

n∑
i=1

xi log(xi) −
n∑

i=1

yi log(yi) +

n∑
i=1

(log(yi) + 1)(yi − xi)

=

n∑
i=1

xi log(xi) −
n∑

i=1

yi log(yi) +

n∑
i=1

log(yi)(yi − xi) + yi − xi

=

n∑
i=1

xi log(xi) −
n∑

i=1

xi log(yi) +

n∑
i=1

yi log(yi) −

n∑
i=1

yi log(yi) + yi − xi

=

n∑
i=1

xi log(xi/yi) + yi − xi.

Next, we state the well-known three-point property for Bregman distances. More

information on Bregman functions and distances can be found, for example, in the recent

paper by Reem et al. [43].
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For any x ∈ D and y, z ∈ intD, it is straightforward to check that

⟨∇φ(y) −∇φ(z), z− x⟩ = Dφ(x,y) −Dφ(x, z) −Dφ(z,y). (1.3)

Following Burachik and Scheimberg [6], we consider throughout this work the follow-

ing set of assumptions on φ:

Assumptions 2.

i) The right level sets of Dφ(y, ·):

Sy,α := {z ∈ intD : Dφ(y, z) ⩽ α}

are bounded for all α ⩾ 0 and for all y ∈ D.

ii) If {xk}, {yk} ⊂ intD with limk→+∞ xk = x, limk→+∞ yk = x and

lim
k→+∞Dφ(x

k,yk) = 0,

then

lim
k→+∞Dφ(x, xk) −Dφ(x,yk) = 0.

iii) If {xk} ⊂ D is bounded, {yk} ⊂ intD is such that limk→+∞ yk = y and limk→+∞ Dφ(x
k,yk) =

0, then limk→+∞ xk = y.

iv) For every y ∈ A, there exists x ∈ intD such that ∇φ(x) = y.

Remark 2. The Bregman distances in Examples 1-3 are examples of functions that satisfy

Assumption 2; see [5].

1.3 Fejér and quasi-Fejér Convergence

Now, we recall some important results concerning sequences in equilibrium and quasi-

equilibrium problems.

Definition 8. A sequence {zk} is quasi-Fejér convergent to a set U if, for each u ∈ U,

there exists a non-negative sequence {ϵk} with
+∞∑
k=0

ϵk < +∞ such that

∥zk+1 − u∥2 ⩽ ∥zk − u∥2 + ϵk, ∀k ∈ N.

We say that {zk} is Fejér convergent to a nonempty set U if, for all k ∈ N,

∥zk+1 − x∥ ⩽ ∥xk − x∥, ∀x ∈ U. (1.4)
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An important property of sequences that are Fejer and quasi-Fejér convergent is that

they are bounded. Furthermore, in some cases, it is possible to show that all sequences

converge. This fact is evidenced in the next result.

Lemma 1. Let U be a nonempty set and assume that {zk} is quasi-Fejér convergent to

U. Then, {zk} is bounded. Moreover, if a cluster point z of {zk} belongs to U, then {zk}

converges weakly to z.

Proof: See [50, Proposition 2.1].

Lemma 2. Let U be a nonempty set and assume that {zk} is Fejer convergent to U. So

{zk} is bounded. Furthermore, if z is a weak accumulation point of {zk} that belongs to U,

then {zk} weakly converges to z.

Proof: See [1, Proposition 1].

Lemma 3. Let {vk}, {γk} and {βk} be nonnegative sequences of real numbers satisfying

vk+1 ⩽ (1 + γk)vk + βk and such that
+∞∑
k=0

γk < +∞,
+∞∑
k=0

βk < +∞. Then, the sequence

{vk} converges.

Proof: See [40, Lemma 2.2.2].



Chapter 2

Equilibrium Problems

Throughout this chapter, X ⊂ H will denote a convex, closed, nonempty set and H a

Hilbert space. We will approach the main concepts and results of Equilibrium Problems.

The equilibrium problem (EP) consists of finding x∗ ∈ X such that

f(x∗,y) ⩾ 0, ∀y ∈ X. (2.1)

This problem will be denoted by EP(f,X) and its solution set by SEP(f,X). A problem

related to EP(f,X) is finding y∗ ∈ X such that

f(x,y∗) ⩽ 0, ∀x ∈ X. (2.2)

This problem is called the dual of EP(f,X) and its solution set is denoted by Sd
EP(f,X). One

of the first works to propose a version of the proximal point method to solve equilibrium

problems was Iusem and Sosa in [25]. In [25], an algorithm is proposed, which is denoted

by PPEP and at each iteration solves an equilibrium problem and is described below:

Take a sequence of regularization parameters: {γk} ⊂ (θ, γ̄], for some γ̄ > θ. Choose

x0 ∈ X and construct the sequence {xk} ⊂ X as follows:

Given xk, we choose xk+1 as the unique solution of the problem EP(fk,X), where fk :

X× X → R is defined as

fk(x,y) = f(x,y) + γk⟨x− xk,y− x⟩.

The results proves the well definition of the proposed method, and as the convergence

results will be presented below. Throughout this chapter, H is a real Hilbert space with

inner product ⟨·, ·⟩ and ∥x∥ =
√

⟨x, x⟩, for all x ∈ H. Let X ⊂ H be a closed and convex

set and a bifunction f : X× X → R satisfying the following proprieties:

11
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Assumptions 3.

i) f(x, x) = 0 for all x ∈ X.

ii) f(·,y) : X → R is upper semicontinuous for all y ∈ X.

iii) f(x, ·) is convex and lower semicontinuous for all x ∈ X.

iv) f is monotone if f(x,y) + f(y, x) ⩽ 0 for all x,y ∈ X.

v) For any sequence {zn}n∈N ⊂ X with lim
n→+∞ ∥zn∥ = +∞, there exists u ∈ X and n0 ∈ N

such that f(zn,u) ⩽ 0 , for all n ⩾ n0.

The first result in the chapter deals with the relationship between equilibrium problems

and the dual equilibrium problem.

Proposition 1. Under conditions i)-iv) it holds that SEP(f,X) = Sd
EP(f,X).

Proof: See [23, proposition 3.3].

The next result says that when we add hypothesis v) in Assumption 3, it is guaranteed

that the equilibrium problem has a solution.

Proposition 2. Assume that f satisfies the Assumptions 3. Then SEP(f,X) is nonempty.

Proof: See [23, Proposition 4.2].

One of the most simple and popular strategies for solving EP is the so-called regular-

ization method. The Tikhonov regularization method for ill-posed problems is well-known

for minimization, monotone inclusion, and fixed-point problems. This approach was in-

troduced for solving equilibrium problems by [31]; see also [33] and [32]. This method

solves at each iteration the regularized EP(fk,X), where fk is given by

fk(x,y) = f(x,y) + γk⟨x− xk,y− x⟩ (2.3)

The next result guarantees that under certain hypotheses, the regularized problem has a

solution, which in turn is unique.

Proposition 3. Take f satisfying Assumptions 3. Then EP(fk,X) where fk is given for

(2.3) has a unique solution.

Proof: See [25, Proposition 3].
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Remark 3. The previous result is used in order to guarantee that the method proposed is

well defined, since, in each iteration, xk+1 is the only solution of the regularized equilibrium

problem.

The next result establishes a relationship between the elements belonging to the solu-

tion set of the dual problem and the solution set of the regularized problem. Consider a

variation of the function (2.3) which we will denote by

f̃(x,y) = f(x,y) + γ⟨x− x̄,y− x⟩,

where γ > 0 and x̄ ∈ X.

Proposition 4. Assume that f satisfies Assumptions 3 i), ii) and iii). If x̃ ∈ S(f̃,X)

and x∗ ∈ Sd(f,X) then

∥x̃− x∗∥2 + ∥x̄− x̃∥2 ⩽ ∥x̄− x∗∥2.

Proof: See [25, Proposition 4].

Next, we present the proximal point method proposed by Iusem and Sosa in [25], as

well as the main convergence result. To this end, we assume that f is monotone.

Algorithm 1 Proximal Point Equilibrium Problem
1: Take a positive and bounded sequence of regularization parameters {γk}.

2: Choose a x0 ∈ X and construct the sequence {xk} as follows:

3: Given xk, xk+1 is the unique solution of the problem EP(fk,X), where fk(x,y) is given

by (2.3).

Theorem 5. Consider EP(f,X), where f satisfies Assumption 3: i), ii) and iii). For all

x0 ∈ X,

a) If f satisfies Assumption 3,iv). then the sequence {xk} generated by Algorithm 1 is

well-defined;

b) if Sd(f,X) ̸= ∅; then the sequence {xk} is bounded and limk→+∞ ∥xk+1 − xk∥ = 0.

c) under the assumptions of items i) and ii) the sequence {xk} is an asymptotically

solving sequence for EP(f,X),i.e., limk→+∞ f(xk,y) ⩾ 0, for all y ∈ X.
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d) if additionally f(·,y) is weakly upper semicontinuous for all y ∈ X, then all weak

cluster points of {xk} solve EP(f,X),

e) if additionally S(f,X) = Sd(f,X) then the sequence {xk} is weakly convergent to some

solution x̂ of EP(f,X).

Proof: See [25, Theorem 1].

Other essential work that was studied by us and that presents an version of the proxi-

mal point method was proposed by Muh and Quoc in [35] in which the proposed algorithm

is used in numerical experiments. Next we present the main assumption used, as well as

their main convergence result.

Definition 9. Let f : X × X → R ∪ {+∞} is said to be strongly monotone on X with

modulus τ > 0 if f(x,y) + f(y, x) ⩽ −τ∥x− y∥2, for all x,y ∈ X.

Lipschitz-type: There exists constants L1 and L2 such that

f(x,y) + f(y, z) ⩾ f(x, z) − L1∥x− y∥2 − L2∥y− z∥2, x,y, z ∈ X. (2.4)

Assume that f is strongly monotone on X with modulus τ > 0 and satisfies (2.4).

Choose a tolerance ε ⩾ 0 and 0 < ρ ⩽ 1/(L2).

Algorithm 2 : Strongly Monotone Problem

1: Choose x0 ∈ X and construct the sequence {xk} as follows:

2: If ∥xk+1 − xk∥ ⩽ ε(1 − r)/r, with r :=
√

1 − 2ρ(τ− L1), then termine: xk+1 is an

ε-solution to (EP). Otherwise, increase k by 1 and go to iteration k.

Theorem 6. Suppose that f is strongly monotone on X with modulus τ > 0 and satisfies

the Lipschitz-type condition (2.4). Then, for any starting point x0, the sequence {xk}

defined by

xk+1 = argmin
y∈X

{ρf(xk,y) +
1
2
∥y− xk∥2}

satisfies

∥xk+1 − x∗∥2 ⩽ α∥xk − x∗∥2, k ⩾ 0,

provided 0 < ρ < 1/(2L2), where x∗ is the unique solution of (EP) and α := 1−2ρ(τ−L1).

Proof: See [35, Theorem 2.1].
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Still in the area of equilibrium problems, some authors have developed inexact methods

of the proximal point method to solve equiibrium problems. We highlight the work done

by Iusem and Nasri [24], which was the basis for the production of this work and we

describe it below

Definition 10. The modulus of total convexity of g at x is the function νφ : H×[0,+∞) →

[0,+∞] defined by νφ(x, t) = inf{Dφ(y, x) : ∥y− x∥ = t}.

Next we present some assumptions on g that will be needed in our convergence analysis.

(H1) The level sets of Dφ(x, ·) are bounded for all x ∈ H.

(H2) infx∈M νφ(x, t) > 0, for all bounded set M ⊂ H and t > 0.

(H3) ∇φ is uniformly continuous on bounded subsets of H.

(H4) ∇φ is onto, i.e., for all y ∈ H∗, exists x ∈ H such that ∇φ(x) = y.

(H5) lim∥x∥→+∞ [
φ(x) − ρ∥x− z∥] = +∞ for all z ∈ X fixed and ρ ⩾ 0.

(H6) If {yj} e {zj} are sequences in X that converge weakly to y and z, respectively, and

y ̸= z, then

lim inf
j→+∞ |⟨∇φ(yj) −∇φ(zj),y− z⟩| > 0.

These properties, with the exception of H5, were identified in [21].

Next, we present the two inexact algorithms proposed by Iusem and Nasri in [24] and

then their main convergence results.

For the next theorem we will consider a set of hypotheses adopted in that work, which

we will call the set of Assumptions 4

Assumptions 4.

i) f(x, x) = 0 for all x ∈ X.

ii) f(x, ·) : X → R is convex and lower semicontinuous for all x ∈ X.

iii) f(·,y) : X → R is upper semicontinuous for all y ∈ X,

iv) Exists θ ⩾ 0 such that f(x,y) + f(y, x) ⩽ θ⟨∇φ(x) −∇φ(y), x− y⟩ for all x,y ∈ X.
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Algorithm 3 :Inexact Proximal Point + Bregman Projection Method
1: Choose a x0 ∈ X;

2: Given xj, find a pair x̃j ∈ H, ej ∈ H∗ such that x̃j solves EP(fej ,X) with

fej (x,y) = f(x,y) + γj⟨∇φ(x) −∇φ(xj),y− x⟩− ⟨ej,y− x⟩ (2.5)

i.e.,

fej (x̃
j,y) ⩾ 0 ∀y ∈ X,

and ej satisfies

∥ej∥∗ ⩽

σγjDφ(x̃
j, xj), if∥x̃j − xj∥ < 1

σγjνφ(x
j, 1), if∥x̃j − xj∥ ⩾ 1,

with Dφ and νφ as in the definition given below

3: Let

υj = γj[∇φ(xj) −∇φ(x̃j)] + ej. (2.6)

If υj = 0 or x̃j = xj, then stop. Otherwise, take Hj = {x ∈ H : ⟨υj, x − x̃j⟩ = 0} and

define

xj+1 = arg min
x∈Hj

Dφ(x, xj).

Algorithm 4 : :Inexact Proximal Point– Extragradient Method
1: Choose x0 ∈ X

2: Given xj, find a pair x̃j ∈ H, ej ∈ H∗ such that x̃j solves EP(fej ,X) with

fej (x,y) = f(x,y) + γj⟨∇φ(x) −∇φ(xj),y− x⟩− ⟨ej,y− x⟩ (2.7)

i.e.,

fej (x̃
j,y) ⩾ 0 ∀y ∈ X,

and ej satisfies

Dφ(x̃
j,∇φ−1[∇φ(x̃j) − γ−1

j ej]) ⩽ σDφ(x̃
j, xj)

3: If x̃j = xj, then stop. Otherwise,

xj+1 = ∇φ−1[∇φ(x̃j) − γ−1
j ej]. (2.8)
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Theorem 7. Consider Algorithm 3, Assumptions 4 and EP(f,X). Take φ : H → R sat-

isfying H1−H5 and an exogenus sequence {γj} ⊂ (θ, γ̄], where θ is the undermonotonicity

constant. Let {xj} be the sequence generated by Algorithm 3. If EP(f,X) has solutions,

then

i) {x̃j} is an asymptotically solving sequence for EP(f,X).

ii) If f(·,y) is weakly upper semicontinuous for all y ∈ X, then all cluster points of {xj}

solve EP(f,X).

iii) If in addition either φ satisfies H6 or EP(f,X) has a unique solution, then the whole

sequence {xj} is weakly convergent to some solution x∗ of EP(f,X).

Proof: See [24, Theorem 5.5].

Theorem 8. Consider Algorithm 4, Assumptions 4 and EP(f,X). Take φ : H → R sat-

isfying H1−H5 and an exogenus sequence {γj} ⊂ (θ, γ̄], where θ is the undermonotonicity

constant. Let {xj} be the sequence generated by Algorithm 4. If EP(f,X) has solutions,

then

i) {x̃j} is an asymptotically solving sequence for EP(f,X).

ii) If f(·,y) is weakly upper semicontinuous for all y ∈ X, then all cluster points of {xj}

solve EP(f,X).

iii) If in addition either φ satisfies H6 or EP(f,X) has a unique solution, then the whole

sequence {xj} is weakly convergent to some solution x∗ of EP(f,X).

Proof: See [24, Theorem 5.8].



Chapter 3

Quasi-Equilibrium Problems

The quasi-equilibrium problem (shortly, QEP) consists of finding x∗ ∈ C(x∗) such that

f(x∗,y) ⩾ 0, ∀y ∈ C(x∗),

where C : X ⇒ X is a point-set map, i.e., it associates to each x ∈ X a closed, convex,

non-empty subset C(x) ⊂ X. These assumptions have been used in algorithms for QEP’s;

see [2, 49, 51]. Furthermore, we suppose the continuity of the multivalued mapping C in

the sense of Mosco (M-continuous). Related bellow

Definition 11. Let us recall that C is said to be M-continuous if:

(i) For {xk}, {yk} ⊂ X with yk ∈ C(xk), xk ⇀ x and yk ⇀ y implies that y ∈ C(x),

which means that the graph of C is sequentially closed.

(ii) For any sequence {xk} ⊂ X with xk ⇀ x and for each y ∈ C(x) there exists a

sequence {yk} ⊂ X with yk ∈ C(xk) such that yk → y.

We denote the solution set of QEP as SQEP(f,C). Next, we consider a set S∗ ⊂

SQEP(f,C) and we assume that S∗ ̸= ∅, where it is given by

S∗ =

{
x ∈

⋂
z∈X

C(z) : f(x,y) ⩾ 0, ∀y ∈
⋃
z∈X

C(z)

}
.

This assumption was considered to study the convergence of extragradient algorithms for

solving QEP (see Strodiot et al.[49]), a projection-like method for QVIP (see [53]) and

generalized Nash equilibrium problem (see [19]).

18
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Remark 4. In equilibrium problems, the hypothesis “the solution set of the Equilib-

rium Problem is nonempty" has been assumed as a standard assumption. In Quasi

Equilibrium Problem, the assumption S∗ ̸= ∅ can be viewed as a natural extension to

QEP’s of the assumption SEP(f,X) ̸= ∅ because if C(x) ≡ X, for all x ∈ X, then⋂
z∈X C(z) =

⋃
z∈X C(z) = X and S∗ = SEP(f,X). It is easy to verify that the as-

sumption S∗ ̸= ∅ guarantees that SQEP(f,C) ̸= ∅. For QVIP, there are available a great

number of results when either X is bounded or the operator C satisfies certain coercivity

condition. However, as remarked by Giannessi and Khan [17] many applications deal with

QVIP with non-coercive operators defined on unbounded sets.

Throughout this chapter, the function f : X × X → R satisfies the Assumptions 1.

The next result is a QEP version of a proposition quite useful in equilibrium problems.

Proposition 5. Let x̄ ∈ X be an arbitrary point and x̂, x∗ ∈ X such that x̂ ∈ SEP(f̂,C(x̄))

and x∗ ∈ Sd(f,C(x̄)) , where f̂ is given by f̂(x,y) = f(x,y) + γ⟨x − x̄,y − x⟩, for some

γ > 0. If f satisfies Assumptions 1, then

∥x̂− x∗∥2 + ∥x̄− x̂∥2 ⩽ ∥x̄− x∗∥2.

Proof: Take x̂ ∈ SEP(f̂,C(x̄)) and x∗ ∈ Sd(f,C(x̄)). Since that x̂ ∈ SEP(f̂,C(x̄)) we have

0 ⩽ f̂(x̂,y) = f(x̂,y) + γ⟨x̂− x̄,y− x̂⟩, ∀y ∈ C(x̄),

and therefore

−f(x̂,y) ⩽ γ⟨x̂− x̄,y− x̂⟩, ∀y ∈ C(x̄). (3.1)

Now, since that x∗ ∈ Sd(f,C(x̄)) we have that f(y, x∗) ⩽ 0 for all y ∈ C(x̄). In particular,

for y = x̂ we have

f(x̂, x∗) ⩽ 0. (3.2)

Make y = x∗ in (3.1), we have that

0 ⩽ γ⟨x̂− x̄, x∗ − x̂⟩. (3.3)

From equality of three points, we have

γ⟨x̂− x̄, x∗ − x̂⟩ = γ

2
(
∥x∗ − x̄∥2 − ∥x̂− x̄∥2 − ∥x∗ − x̂∥2) . (3.4)

Replace (3.4) in (3.3) and using that γ > 0, we have that

∥x∗ − x̂∥2 + ∥x̂− x̄∥2 ⩽ ∥x∗ − x̄∥2,
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which proves the proposition.

Let f : X × X → R be a bifunction. We denote by ∂2f the subdifferential (in the

sense of convex analysis) of f with respect to its second argument evaluated at a point

(x, x) ∈ X× X. In view of assumptions 1, i) and iii), one has

∂2f(x, x) = {v ∈ H : f(x,y) ⩾ f(x, x) + ⟨v,y− x⟩, ∀y ∈ X}

= {v ∈ H : f(x,y) ⩾ ⟨v,y− x⟩, ∀y ∈ X}.

It is called subdifferential diagonal; see [22]. Given x ∈ X we denote by

Υ(x) = ∥x− arg min
y∈C(x)

{f(x,y) +
1
2
∥y− x∥2}∥.

The next proposition will be used in numerical experiments. It measures the quality of a

candidate’s solution to QEP. It is an extension to QEP of a well known characterization

of a solution of an equilibrium problem; see [22].

Proposition 6. A point x∗ ∈ SQEP(f,C) if only if Υ(x∗) = 0.

Proof: If x∗ ∈ SQEP(f,C), then x∗ ∈ C(x∗) and f(x∗,y) ⩾ 0 for all y ∈ C(x∗). So, we

have

f(x∗,y) +
1
2
∥y− x∗∥2 ⩾ f(x∗,y) ⩾ 0 = f(x∗, x∗) +

1
2
∥x∗ − x∗∥2, ∀y ∈ C(x∗).

Thus, x∗ = arg miny∈C(x){f(x,y)+1
2∥y−x∥2 and Υ(x∗) = 0. Now, suppose that Υ(x∗) = 0,

that is, x∗ = arg miny∈C(x){f(x,y)+ 1
2∥y−x∥2. From the first-order optimality condition,

we have that x∗ ∈ C(x∗) and

0 ∈ ∂2f(x
∗, x∗) +NC(x∗)(x

∗),

where NC(x∗)(x
∗) stands to the normal cone to C(x∗) at x∗. Thus, there exists s∗ ∈

∂2f(x
∗, x∗) such that 0 ∈ s∗ + NC(x∗)(x

∗), therefore −s∗ ∈ NC(x∗)(x
∗). Follows from the

definition of a normal cone that

⟨y− x∗,−s∗⟩ ⩽ 0, ∀y ∈ C(x∗)

consequently

⟨y− x∗, s∗⟩ ⩾ 0, ∀y ∈ C(x∗). (3.5)

On the other hand, s∗ ∈ NC(x∗)(x
∗) and from iii) f(x∗, ·) is convex, then

f(x∗,y) ⩾ f(x∗, x∗) + ⟨y− x∗, s∗⟩ = ⟨y− x∗, s∗⟩ ⩾ 0, ∀y ∈ C(x∗),

where the equality follows from i) and the second inequality is due to (3.5).
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3.1 Proximal point method (PPM)

In this section, we present the version of the proximal point method proposed by [47]

for solving a QEP.

Algorithm 5 : Proximal Point Method
1: Take a bounded auxiliary sequence of positive parameters {γk} and choose x0 ∈ X.

2: Given xk, compute

xk+1 ∈ SEP(fk,Ck),

where fk(x,y) = f(x,y) + γk⟨x− xk,y− x⟩ and Ck = C(xk).

3: Se xk+1 = xk, stop. Otherwise, set k = k+ 1 and return to previous step.

It is important to ensure that the method is well defined i.e., given xk generates xk+1.

We will show that the algorithm proposed above is indeed feasible and well defined. We

will show that assuming that the function f satisfies the conditions i)− v) in assumptions

1, the function fk also satisfies the conditions.

Proposition 7. If f satisfies Assumptions 1: i)-iv), then fk satisfies i)-v).

Proof: First, let’s see that if f satisfies the properties i)-iii), the same happens with

the regularized function fk(x,y) = f(x,y) + γk⟨x − xk,y − x⟩. Clearly, fk(x, x) = 0

for all x ∈ X, which tells us that i) is satisfied. Since f satisfies ii), γk⟨x − xk,y − x⟩

is a multilinear map, given sequences {xj}, {yj} ⊂ X such that xj ⇀ x and yj ⇀ y,

then fk(x
j,yj) → fk(x,y). Finally, let’s see that the function fk(x, ·) is convex. Let

a,b ∈ X and t ∈ [0, 1]. Thus

fk(x, ta+ (1 − t)b) = f(x, ta+ (1 − t)b) + γk⟨x− xk, ta+ (1 − t)b− x⟩

= f(x, ta+ (1 − t)b) + γk⟨x− xk, ta− tx+ tx+ (1 − t)b− x⟩

⩽ tf(x,a) + (1 − t)f(x,b) + tγk⟨x− xk,a− x⟩+ (1 − t)γk⟨x− xk,b− x⟩

= t
(
f(x,a) + γk⟨x− xk,a− x⟩

)
+ (1 − t)

(
f(x,b) + γk⟨x− xk,b− x⟩

)
= tfk(x,a) + (1 − t)fk(x,b).

In the inequality, it was stated that the function f(x, ·) is convex. See also that if f is



Chapter 3. Quasi-Equilibrium Problems 22

monotone, that is, f(x,y) + f(y, x) ⩽ 0, then the same goes for fk.

fk(x,y) + fk(y, x) = f(x,y) + γk⟨x− xk,y− x⟩+ f(y, x) + γk⟨y− xk, x− y⟩.

= f(x,y) + f(y, x) + γk⟨x− xk,y− x⟩+ γk⟨xk − y,y− x⟩.

⩽ γk⟨x− y,y− x⟩

= −γk∥x− y∥2

⩽ 0.

In the first inequality, the fact that f(y, x) + f(y, x) ⩽ 0 was used. In summary, we have

that fk satisfies property iv), whenever f also satisfies. Finally, we will show below that

fk also satisfies the v) property. To prove the validity of the property v) for the function

fk, let’s take a sequence {zk} such that limk→∞ ∥zk∥ = +∞, and γk > 0. We claim that

v) is valid when u = PX(x
k), where P : H → X denotes the orthogonal projection onto X.

Note that

fk(z
k,u) = f(zk,PX(x

k)) − γk⟨zk − xk, zk − PX(x
k)⟩

= f(zk,PX(x
k)) − γk⟨zk − PX(x

k), zk − PX(x
k)⟩− γk⟨PX(x

k) − xk, zk − PX(x
k)⟩

⩽ −f(PX(x
k), zk) + γk⟨xk − PX(x

k), zk − PX(x
k)⟩− γk⟨zk − PX(x

k), zk − PX(x
k)⟩

⩽ −f(PX(x
k), zk) − γk∥zk − PX(x

k)∥2, (3.6)

using the definition of fk in the first equality, the fact that {zk} ⊂ X together with the

well-known obtuse angle property of orthogonal projections, in the first inequality and

iv) in the second inequality. We introduce now some notation for the marginals of f. For

each x ∈ X, define gx : X → R as

gx(y) = f(x,y) (3.7)

Take x̂ ∈ ri(X), so that x̂ belongs to the relative interior of the effective domain of gu.

Since gu is convex by iii), its subdifferential at x̂, namely ∂2gu(x̂), is nonempty. Take

v̂ ∈ ∂2gu(x̂). By the definition of subdifferential,

⟨v̂, zk − x̂⟩ ⩽ gu(z
k) − gu(x̂) = f(u, zk) − f(u, x̂) (3.8)
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In view of (3.8)

−fk(u, zk) ⩽ ⟨v̂, zk − x̂⟩− f(u, x̂)

⩽ ∥v̂∥∥zk − x̂∥− f(u, x̂)

⩽ ∥v̂∥∥zk − u∥+ ∥v̂∥∥u− x̂∥− f(u, x̂). (3.9)

Replacing (3.9) in (3.6),

fk(z
k,u) ⩽ ∥zk − u∥

[
∥v̂∥− γk∥zk − u∥

]
+ ∥v̂∥∥u− x̂∥− f(u, x̂). (3.10)

Since that γk > 0 and limk→+∞ ∥zk∥ = +∞, so that limk→+∞ ∥zk −u∥ = +∞, it follows

easily from (3.10) that limk→+∞ fk(z
k,u) = −∞, so that fk(zk,u) ⩽ 0 for large enough k.

We have verified that fk satisfies the assumptions i)-v) and proved that it is finished.

Remark 5. Since that fk satisfies i)-v) for each k ∈ N, xk+1 is well defined, i.e. SEP(fk,Ck)

is nonempty due to Proposition 2. Therefore, the well-defined sequence follows from the

existence result for EP given by Proposition 2 taking into account that fk satisfies i)-v)

and Ck = C(xk) is a nonempty, closed, and convex set (fixed at each step).

Remark 6. It is worth mentioning that the method does not need to start at a fixed

point of C, i.e. x0 ∈ C(x0). Moreover, we do not assume that x ∈ C(x) for all x ∈ X

as done in some existing works on extragradient algorithms for QEP’s; see, for instance

[49][ Assumption A – c] and gap function; see [2].

3.2 Convergence analysis

In this section, we present a convergence analysis of the proximal point method for

solving quasi-equilibrium problems defined previously. Let {xk} be the sequence generated

by Algorithm 5. We start the convergence analysis of {xk} checking that the stopping rule

is practical.

Proposition 8. If xk+1 = xk for some k ∈ N, then xk is a solution of QEP.

Proof: From the definition of the algorithm, we have that xk+1 ∈ SEP(fk,Ck). Thus,we

have xk+1 ∈ Ck and fk(x
k+1,y) ⩾ 0 for all y ∈ Ck. Therefore

fk(x
k+1,y) = f(xk+1,y) + γk⟨xk+1 − xk,y− xk+1⟩ ⩾ 0, ∀y ∈ Ck. (3.11)
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Since that xk+1 = xk we obtain that γk⟨xk+1−xk,y−xk+1⟩ = 0. Follows from (3.11) that

f(xk+1,y) ⩾ 0, for all y ∈ Ck. Now, since that xk+1 ∈ Ck and xk+1 = xk, we get xk ∈ Ck

and f(xk,y) ⩾ 0, for all y ∈ Ck. Thus xk ∈ SQEP(f,C) and the proof is finished.

From now on, we assume that Algorithm 5 generates an infinite sequence {xk} in view

of the last proposition.

Proposition 9. Let {xk} be the sequence generated by the Algorithm 5. The following

assertions hold:

i) {xk} is Fejér convergent to S∗;

ii) {xk} is bounded;

iii) limk→+∞ ∥xk+1 − xk∥ = 0.

Proof: We will test each item separately.

i) Take any x̃ ∈ S∗ ⊂ SEP(f,C(z)), for all z ∈ X. Since that f is monotone, we get that

SEP(f,C(z)) = Sd
EP(f,C(z)), for all z ∈ X. In particular, for z = xk we have that

x̃ ∈ Sd
EP(f,Ck), ∀ k ∈ N.

Thus, applying Proposition 5 with f̂ = fk, x̂ = xk+1, and x∗ = xk we obtain

∥xk+1 − x̃∥2 + ∥xk+1 − xk∥2 ⩽ ∥xk − x̃∥2, (3.12)

and therefore

∥xk+1 − x̃∥ ⩽ ∥xk − x̃∥.

Since that x̃ was arbitrarily taken in S∗, we have that {xk} is Fejér convergent to S∗.

ii) {xk} is Féjer convergent, follows from lemma (2) that {xk} is bounded.

iii) Follows from (3.12),

0 ⩽ ∥xk+1 − xk∥2 ⩽ ∥xk − x̃∥2 − ∥xk+1 − x̃∥2. (3.13)

Since the sequence of real numbers {∥xk − x̃∥} is non-increasing and bounded, we

have that it is convergent. Thus, we have that

lim
k→+∞ ∥xk − x̃∥ = L.

Therefore,

lim
k→+∞ ∥xk+1 − x̃∥ = L.
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To the limit with k → +∞ in (3.13), we obtain

lim
k→+∞ ∥xk+1 − xk∥ = 0.

Since the sequence is bound by the last proposition, next we prove that all the weak

cluster points of {xk} are solution of the quasi-equilibrium problem.

Theorem 9. Every cluster point of {xk} belongs to SQEP(f,C).

Proof: Let {xkj} be a subsequence of {xk} that converges to x̂. From the definition of

Algorithm 5 , we have that xkj+1 ∈ C(xkj). From Proposition 9 (iii), we have

lim
j→∞ ∥xkj+1 − xkj∥ = 0,

and hence, limj→∞ xkj+1 = x̂. Thus, from the M-Continuity of C, we have that x̂ ∈ C(x̂)

and, given y ∈ C(x̂), there exists a sequence {ykj} such that ykj → y and ykj ∈ C(xkj).

Now, as xkj+1 ∈ SEP(fkj
,Ckj

) we have

0 ⩽ fkj
(xkj+1, z), ∀z ∈ C(xkj),

which means in particular for z = ykj ∈ C(xkj) that

0 ⩽ f(xkj+1,ykj) + γkj
⟨xkj+1 − xkj ,ykj − xkj+1⟩ ∀j ∈ N

Using the Cauchy–Schwartz inequality, we have,

0 ⩽ f(xkj+1,ykj) + γkj
∥xkj+1 − xkj∥∥ykj − xkj+1∥ ∀j ∈ N.

Using the fact that {γkj
}, {xkj} and {ykj} are bounded sequences, f satisfies ii)( assumptions 1)

and taking the limit as j → ∞ in the last inequality, we have

0 ⩽ f(x̂,y).

Since we consider an arbitrary y ∈ C(x̂) this means that 0 ⩽ f(x̂,y), for all y ∈ C(x̂),

and hence, x̂ ∈ SQEP(f,C). This completes the proof.

Note that S∗ ⊂ SQEP(f,C) and from Proposition 9, we have that {xk} is Fejér conver-

gent to S∗. Theorem 9 does not guarantee the weak cluster points of {xk} belong to S∗, so

we cannot apply Lemma 2 in order to obtain weak convergence of the whole sequence to

a point of SQEP(f,C). Next result gives a sufficient condition to overcome this drawback.



Chapter 3. Quasi-Equilibrium Problems 26

Corollary. 1. If f is strictly monotone, then {xk} weakly converges to a solution of QEP.

Proof: We begin our proof with the following statements:

Statement 1: If f is strictly monotone, then SQEP(f,C) = S∗ = {x∗}, where x∗ is a weak

accumulation point of {xk}. Once this fact is true, we get the result because:

1) By the proposition 9 we have that {xk} is Fejér Convergent, bounded, and limk→+∞ ∥xk+1−

xk∥ = 0.

2) Every accumulation point of {xk} ∈ SQEP(f,C). Since {xk} is bounded, it admits

a convergent subsequence. As it has a single point of accumulation, the whole

sequence is convergent.

Statement 2 : S∗ ⊂ SQEP(f,C)

Let x∗ ∈ S∗ ⇒ x∗ ∈ {∩z∈XC(z); f(x∗,y) ⩾ 0, ∀y ∈ ∪z∈XC(z)}. Note that, as x∗ ∈

∩z∈XC(z) ∀z ∈ X, we have in particular that x∗ ∈ C(x∗). Furthermore, since that

f(x∗,y) ⩾ 0, ∀ y ∈ ∪z∈XC(z), we have f(x∗,y) ⩾ 0, ∀ y ∈ C(x∗). Thus proving our

second statement. Finally, let x̂ ∈ SQEP(f,C) and x∗ ∈ S∗ be arbitrary points. Then:

f(x̂,y) ⩾ 0, ∀ y ∈ C(x̂) (3.14)

e x∗ ∈ {∩z∈XC(z)} .

f(x∗,y) ⩾ 0, ∀y ∈
⋃
z∈X

C(z). (3.15)

Setting y = x∗ in (3.14), we get

f(x̂, x∗) ⩾ 0.

On the other hand, making y = x̂ in (3.15), and using the fact that f is monotonic comes

that f(x∗, x̂) ⩽ 0. Since f(x∗, x̂) ⩾ 0, we conclude that

f(x̂, x∗) = 0. (3.16)

Now, as x∗ ∈ S∗ ⊂ SQEP(f,C), we have f(x∗, x̂) ⩾ 0. If it holds that x∗ ̸= x̂, we have the

strict monotonicity of f that

0 ⩽ f(x∗, x̂) = f(x∗, x̂) + f(x̂, x∗) < 0. (3.17)

Therefore, we must have x∗ = x̂ and consequently S∗ = SQEP(f,C) = {x∗}.



Chapter 4

Quasi-Equilibrium Problems:Exact and

Inexact Versions

In this chapter, we present the results we obtained in our studies. We started the

chapter by proposing a version of the proximal point method with the Bregman distance

in space Rn. Posteriorly, we propose an inexact version of the method proposed by Santos

and Souza [47] in Hilbert Space. In both methods, we perform a convergence analysis,

obtaining the classic results on the convergence of sequences generated in proximal point

algorithms.

4.1 Bregman regularized

In this section we state a quasi-equilibrium generalization of the proximal point method

proposed by Burachik and Kassay [4] in the space Rn.

Algorithm 6 : Bregman Proximal Point Method
1: Take a bounded sequence of positive parameters {γk}, choose x0 ∈ X and set k = 0

2: Given xk, compute xk+1 ∈ SEP(fk,Ck), where

fk(x,y) = f(x,y) + γk⟨∇φ(x) −∇φ(xk),y− x⟩ (4.1)

and Ck := C(xk).

3: If xk+1 = xk, stop and return xk. Otherwise, set k = k + 1 and return to previous

step.

27
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Remark 7. Note that Algorithm 6 solves, at each iteration, a Bregman regularized equi-

librium problem. Thus, the well-definition of the method depends on (4.1) has a solution.

In [4, Corollary 3.2], it is proved that (4.1) has a solution if the following assumption

holds: Given x̄ ∈ X fixed, if for every sequence {xk} ⊂ X such that limk→∞ ||xk|| = ∞, we

have

lim inf
k→∞

(
f(x̄, xk) + γ⟨∇φ(x̄) −∇φ(xk), x̄− xk⟩

)
> 0. (4.2)

Moreover, if φ is strictly convex, then (4.1) has a unique solution. In [4, Remark 3.1], it

is shown that the above condition is weaker than to suppose that the Bregman function φ

is coercive, i.e.,

lim
||x||→∞

φ(x)

||x||
= +∞, (4.3)

see [44, Lemma 1] and [4, Corollary 3.3]. On the other hand, as mentioned by Censor

et al. [8, page 380], if φ is a Bregman function with zone S and S ′ ⊂ S is convex and

closed, then φ can also be considered a Bregman function with zone S ′. This fact can

be applied to Algorithm 6 taking into account that Ck ⊂ X is convex and closed, for all

k ∈ N, together with the assumptions made on the Bregman distance Dφ with zone X

and the bifunction f. Therefore, one can ensure that Step 2 of Algorithm 6 is well-defined

(i.e., (4.1) has a solution) by assuming that (4.2) (or alternatively (4.3)) holds.

Next, we show that if Algorithm 6 stops at iterate xk, then this point is a solution of

the QEP.

Proposition 10. If xk+1 = xk for some k ∈ N, then xk is a solution of QEP.

Proof: From the definition of the algorithm, we have that xk+1 ∈ SEP(fk,Ck). Thus, we

have xk+1 ∈ Ck and fk(x
k+1,y) ⩾ 0 for all y ∈ Ck. Therefore

fk(x
k+1,y) = f(xk+1,y) + γk⟨∇φ(xk+1) −∇φ(xk),y− xk+1⟩ ⩾ 0, ∀y ∈ Ck. (4.4)

Since xk+1 = xk we obtain that γk⟨∇φ(xk+1) − ∇φ(xk),y − xk+1⟩ = 0. Follows from

(4.4) that f(xk+1,y) ⩾ 0, for all y ∈ Ck. Now, since that xk+1 ∈ Ck and xk+1 = xk, we

get xk ∈ Ck and f(xk,y) ⩾ 0, for all y ∈ Ck. Thus xk ∈ SQEP(f,C) and the proof is

finished.

In the next result, let us state and prove a Bregman version of [47, proposition 2.5]

that we will use in the next results. To this end, let x̄ be fixed, define

f̃(x,y) = f(x,y) + γ⟨∇φ(x) −∇φ(x̄),y− x⟩, (4.5)
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for some γ > 0.

Proposition 11. Let x̄ ∈ X be an arbitrary point, x̃, x∗ ∈ X such that x̃ ∈ SEP(f̃,C(x̄))

and x∗ ∈ Sd
EP(f,C(x̄)). If f satisfies Assumption 2: i)-iii), then

Dφ(x
∗, x̃) +Dφ(x̃, x̄) ⩽ Dφ(x

∗, x̄).

Proof: Since that x̃ ∈ SEP(f̃,C(x̄)), we have that f̃(x̃,y) ⩾ 0, for all y ∈ C(x̄). This means

that

0 ⩽ f(x̃,y) + γ⟨∇φ(x̃) −∇φ(x̄),y− x̃⟩, ∀ y ∈ C(x̄). (4.6)

Now, as x∗ ∈ Sd
EP(f,C(x̄)), we have that x∗ ∈ C(x̄) and, in addition, f(x, x∗) ⩽ 0, for all

x ∈ C(x̄). In particular, f(x̃, x∗) ⩽ 0. Making y = x∗ in (4.6) together with γ > 0, we

obtain

0 ⩽ ⟨∇φ(x̃) −∇φ(x̄), x∗ − x̃⟩.

Finally, from (1.3), we have

0 ⩽ ⟨∇φ(x̃) −∇φ(x̄), x∗ − x̃⟩ = Dφ(x
∗, x̄) −Dφ(x

∗, x̃) −Dφ(x̃, x̄).

Consequently,

Dφ(x
∗, x̃) +Dφ(x̃, x̄) ⩽ Dφ(x

∗, x̄).

4.1.1 Convergence Analysis

Next, we prove some classical properties of the proximal point method for the sequence

{xk} generated by the Algorithm 6.

Theorem 10. Consider {xk} the sequence generated by algorithm 6. Then

i) {xk} is bounded;

ii) limk→+∞ Dφ(x
k+1, xk) = 0.

Proof: For the proof of i),let x∗ ∈ S∗ be arbitrary. Since S∗ ⊂ SEP(f,C(z)), for all

z ∈ X, we have that x∗ ∈ SEP(f,C(z)) and hence f(x∗,y) ⩾ 0, for all y ∈ C(z). Now,

since that f is monotone, we have f(y, x∗) ⩽ 0, for all y ∈ C(z). This implies that

x∗ ∈ Sd
EP(f,C(z)), for all z ∈ X, and, in particular, for z = xk. From the definition of
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Algorithm 6, we have xk+1 ∈ SEP(fk,C(xk)). Thus, applying Proposition 11 with f̃ = fk

in (4.1), x̃ = xk+1, x̄ = xk we have that

Dφ(x
∗, xk+1) +Dφ(x

k+1, xk) ⩽ Dφ(x
∗, xk), k ∈ N. (4.7)

Since Dφ(x
k+1, xk) ⩾ 0, we have

Dφ(x
∗, xk+1) ⩽ Dφ(x

∗, xk), ∀k ∈ N, x∗ ∈ S∗.

It follows from the last inequality that {Dφ(x
∗, xk)} is non-increasing, and since it is non-

negative, it converges. In particular, it is bounded. Thus, the first assertion directly

follows from condition i) in Assumption 2.

Now, We will the prove the item ii). From (4.7), we have

Dφ(x
∗, xk+1) ⩽ Dφ(x

∗, xk+1) +Dφ(x
k+1, xk) ⩽ Dφ(x

∗, xk), ∀k ∈ N.

Letting k → ∞ in the last inequality and taking into account that {Dφ(x
∗, xk)} is con-

vergent,i.e. limk→+∞ Dφ(x
∗, xk) = L. So

lim
k→+∞Dφ(x

∗, xk+1) ⩽ lim
k→+∞Dφ(x

∗, xk+1) + lim
k→+∞Dφ(x

k+1, xk) ⩽ lim
k→+∞Dφ(x

∗, xk),

consequently,

L ⩽ L+ lim
k→+∞Dφ(x

k+1, xk) ⩽ L.

Therefore, limk→+∞ Dφ(x
k+1, xk) = 0.

Next, we prove our main convergence result.

Theorem 11. Every weak cluster point of {xk} belongs to SQEP(f,C).

Proof: It follows from the last theorem i) that {xk} is bounded. Let {xkj} be a subsequence

of {xk} that converges to x̂. From the definition of Algorithm 6, we have that xkj+1 ∈

C(xkj). It follows from Theorem 10 ii), we have

lim
k→∞Dφ(x

k+1, xk) = 0,

and hence, we can guarantee from condition ii) in Assumption 2 that limj→∞ xkj+1 = x̂.

Thus, from the M-Continuity of C, we have that x̂ ∈ C(x̂) and, given y ∈ C(x̂), there

exists a sequence {ykj} such that ykj → y and ykj ∈ C(xkj). Now, as xkj+1 ∈ SEP(fkj
,Ck)

we have

fkj
(xkj+1, z) ⩾ 0, ∀z ∈ C(xkj),
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which means in particular for z = ykj ∈ C(xkj) that

f(xkj+1,ykj) + γkj
⟨∇φ(xkj+1) −∇φ(xkj),ykj − xkj+1⟩ ⩾ 0.

Using the Cauchy–Schwartz inequality, we have

f(xkj+1,ykj) + γkj
∥∇φ(xkj+1) −∇φ(xkj)∥∥ykj − xkj+1∥ ⩾ 0.

Using the fact that {γkj
}, {xkj} and {ykj} are bounded sequences, φ is continuously dif-

ferentiable, f satisfies ii) in Assumptions 2 and taking the limit as j → ∞ in the last

inequality, we have

f(x̂,y) ⩾ 0.

Since that we consider an arbitrary y ∈ C(x̂) this means that f(x̂,y) ⩾ 0, for all y ∈ C(x̂),

and hence, x̂ ∈ SQEP(f,C). This completes the proof.

4.1.2 Numerical Experiments

In this section, we illustrate the performance of the proposed method on one test

problem adapted from [47] . We compare the performance of two Bregman regularized

versions with the (classical) proximal point method for quasi-equilibrium problems pro-

posed by [47]. We refrain from discussing computational efficiency of other methods, and

hence, we skip discussions of comparisons of the proposed methods with other methods

for QEP’s.

The algorithms are coded in MATLAB R2020b on a 8 GB RAM Intel Core i7 to obtain

the numerical results. The stopping rule is ∥xk+1 − xk∥ < 10−5. We take γk = γ = 3.5,

for all k ∈ N. We solve the subproblem (4.1) by using the regularized method in Muu

and Quoc [35] in the classical version and the Bregman regularized method in Flam and

Antipin [16]. They consider the following iterative method for solving an equilibrium

problem: for any starting point x0 ∈ X and γ > 0, given xk ∈ X define xk+1 ∈ X such

that

xk+1 = arg min
y∈X

{γf(xk,y) +
1
2
∥y− xk∥2} (4.8)

and

xk+1 = arg min
y∈X

{γf(xk,y) +Dφ(y, xk)}, (4.9)

respectively. The solutions of the subproblems in (4.36) and (4.9) are computed by the

build-in MATLAB solver “fmincon".
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Example 4. [47, Example 4.1 - Adapted] Consider the 2-dimensional nonsmooth quasi-

equilibrium problem with the bifunction f : X× X → R given by

f(x,y) =| y1 | − | x1 | +y2
2 − x2

2

and the multivalued mapping C given by

C(x) =

{
y ∈ X ; y1 + y2 = 1 +

| x1 |

1+ | x1 |
, yi ⩾ 0.1 i = 1, 2

}
,

where X ⊂ R2
++ is given by X = [0.1,+∞)× [0.1,+∞). One can check that f is monotone

and the solution set is the single point x∗ = (1, 1
2).

We run Algorithm 5 with 100 random starting points in the box [0.1, 20]×[0.1, 20]. We

compare the performance of the method with the Bregman functions given in Example 8

(called PPM), Example 9 (called BPPM-1) and Example 10 (called BPPM-2). At each

running, the methods start from the same initial point and use the same constant γ.

In the Tables 4.1,4.2 and 4.3, we show the results of all methods in terms of number of

iterates, CPU time and the accuracy Υ(x∗) (cf. Proposition 6) until the stopping rule is

satisfied, respectively. In these tables, min. iter. (resp. min. time), max. iter. (resp.

max. time) and med. iter. (resp. med. time) denote the minimal, maximum and median

of iterates (resp. CPU time) in 100 runs of the methods as well as min. Υ(x∗), max.

Υ(x∗) and med. Υ(x∗) stand respectively to the minimum, maximum and median of the

values Υ(x∗) in 100 runs, where x∗ is the solution found by the methods.

As we can see in Tables 4.1 and 4.2, the Bregman regularized methods outperform the

classical proximal point method in both number of iterates and CPU time. Furthermore,

as shown in Table 4.3 all the methods find a good approximation of the solution.

Table 4.1: Running 100 times Algorithm 5 for Example 4.

Algorithm min. iter.(k) max. iter.(k) med. iter.(k)

PPM 7 14 12.65

BPPM-1 8 17 11.69

BPPM-2 7 15 12.25

In Figures 4.4,4.5 and 4.6, we consider a particular instance of each method (using

the same random starting point x0 = (8.493, 18.3231)) to illustrate the assertions in
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Table 4.2: Running 100 times Algorithm 5 for Example 4.

Algorithm min. CPU time max. CPU time med. CPU time

PPM 0.0992826 1.1111657 0.199839135

BPPM-1 0.0840165 0.2752377 0.171949707

BPPM-2 0.0973115 0.4178743 0.178682051

Table 4.3: Running 100 times Algorithm 5 for Example 4.

Algorithm min. Υ(x∗) max. Υ(x∗) med. Υ(x∗)

PPM 0 2.360499186405201e-06 4.720998372810402e-08

BPPM-1 0 2.880658707330110e-06 5.761317414660219e-08

BPPM-2 0 2.687690141983094e-06 5.375380283966188e-08

Figure 4.1: Behavior of {Dφ(x
k+1, xk)} and {||xk+1 − xk||}.

Theorems 10 and 11. Figure 4.4 shows that the sequence {Dφ(x
k+1, xk)} converges to

zero faster than {||xk+1 − xk||} using both Bregman distances in Example 9 and 10. In

Figures 4.5 and 4.6 we can see that the sequence {xk} generated by the methods BPPM-1

and BPPM-2 approach the solution of the QEP faster than the Euclidean regularized

PPM.
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Figure 4.2: Behavior of {||xk − x∗||}.

Figure 4.3: Behavior of Υ(xk).

4.2 Quasi-Equilibrium Problems: Inexact Versions

In this section we state two inexact versions of the proximal point method for Hilbert

space. The versions proposed here are generalizations of the work done by Santos and

Souza [47] and Konnov [29].

Let x̄ ∈ X, e ∈ H∗ and γ > 0 be arbitrary. Given an equilibrium bifunction f, consider

the following inexactly regularized equilibrium bifunction:

f̃(x,y) = f(x,y) + γ⟨x− x̄,y− x⟩− ⟨e,y− x⟩. (4.10)

Proposition 12. Let x∗, x̂ ∈ C(x̄) be such that x̂ ∈ SEP(f̃,C(x̄)) and x∗ ∈ Sd(f,C(x̄)),
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where f̃ is given by (4.10). If f satisfies Assumption 1, then

∥x̄− x̂∥2 + ∥x̂− x∗∥2 ⩽ ∥x̄− x∗∥2 −
2
γ
⟨e, x∗ − x̂⟩. (4.11)

Moreover, if ∥x∗ − x̂− e∥ ⩽ max {∥e∥, ∥x∗ − x̂∥}, then

∥x̄− x̂∥2 + ∥x̂− x∗∥2 ⩽ ∥x̄− x∗∥2. (4.12)

Proof: Since that x̂ ∈ SEP(f̃,C(x̄)), we have that x̂ ∈ C(x̄) and

f̃(x̂,y) ⩾ 0, ∀ y ∈ C(x̄).

This means that

0 ⩽ f(x̂,y) + γ⟨x̂− x̄,y− x̂⟩− ⟨e,y− x̂⟩, ∀y ∈ C(x̄). (4.13)

Now, since that x∗ ∈ Sd
EP(f,C(x̄)), we have that x∗ ∈ C(x̄) and

f(x, x∗) ⩽ 0, ∀x ∈ C(x̄).

Taking x = x̂ in the last inequality and using this fact into (4.13) with y = x∗, we obtain

0 ⩽ γ⟨x̂− x̄, x∗ − x̂⟩− ⟨e, x∗ − x̂⟩. (4.14)

Since that

⟨x̂− x̄, x∗ − x̂⟩ = 1
2
(
∥x∗ − x̄∥2 − ∥x̂− x̄∥2 − ∥x̂− x∗∥2) ,

we have, from (4.14), that

0 ⩽ γ⟨x̂− x̄, x∗ − x̂⟩− ⟨e, x∗ − x̂⟩

=
γ

2
(
∥x∗ − x̄∥2 − ∥x̂− x̄∥2 − ∥x̂− x∗∥2)− ⟨e, x∗ − x̂⟩,

and using the fact that γ > 0, we prove the first assertion. To prove the second assertion,

first note that

⟨e, x∗ − x̂⟩ = 1
2
(
∥x∗ − x̂∥2 + ∥e∥2 − ∥x∗ − x̂− e∥2) ⩾ 0, (4.15)

where the inequality comes from the assumption ∥x∗ − x̂ − e∥ ⩽ max {∥e∥, ∥x∗ − x̂∥}.

Therefore, using (4.15) in (4.11) together with the fact that γ > 0, we obtain

0 ⩽
γ

2
(
∥x∗ − x̄∥2 − ∥x̂− x̄∥2 − ∥x̂− x∗∥2)− ⟨e, x∗ − x̂⟩

⩽ ∥x∗ − x̄∥2 − ∥x̂− x̄∥2 − ∥x̂− x∗∥2.
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Therefore,

∥x̂− x̄∥2 + ∥x̂− x∗∥2 ⩽ ∥x∗ − x̄∥2.

Next, we present two inexact versions of the proximal point method for solving a QEP.

From now on, we assume that the equilibrium bifunction f satisfies i)-iii) in Assumption

1. Let S∗ be the set given by

S∗ =

{
x ∈

⋂
z∈X

C(z) : f(x,y) ⩾ 0, ∀y ∈
⋃
z∈X

C(z)

}
. (4.16)

This set will play an important role in our convergence analysis, and it has been considered

in the convergence analysis of different algorithms in quasi-equilibrium problems; see [19],

[30],[47],[49],[51],[53]. Note that S∗ ⊂ SQEP(f,C), and hence, if S∗ ̸= ∅, then SQEP(f,C) ̸=

∅. Alternatively, we also consider the set S∗ given by

S∗ = {x ∈ C(x) : f(x,y) ⩾ 0, ∀y ∈ X} . (4.17)

In this case, we also have that S∗ ⊂ SQEP(f,C). Dual versions of the sets (4.16) and

(4.17) were considered, for instance, in [30] and [10],[51] respectively.

Next, we provide some examples where the sets S∗ and S∗ are non-empty; see also [30,

Example 1].

Example 5. Consider x∗ ∈ SEP(f,X) and let C be a point-to-set mapping given by

C(x) = {z ∈ X : ∥z− x∗∥ ⩽ ∥x∥},

i.e., for each x ∈ X, C(x) is a closed ball center at x∗ with ratio ∥x∥. Clearly, x∗ ∈⋂
x∈X C(x) and, in particular, x∗ ∈ C(x∗). Since x∗ ∈ SEP(f,X), then we can easily see

that x∗ ∈ S∗ and x∗ ∈ S∗. Therefore, the non-emptyness of S∗ and S∗ directly follows

from their existence, which results in an equilibrium problem.

Example 6 (Minimization problem). Let φ : X ⊂ Rn → R be a function. The minimiza-

tion problem

min
x∈X

φ(x)

can be viewed as the quasi-equilibrium problem QEP by taking

C(x) = {z ∈ X : φ(z) ⩽ φ(x)} and f(x,y) = φ(y) −φ(x).
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In this case, clearly x ∈ C(x), for every x ∈ X, and one can easily see that arg minx∈X φ(x) =

S∗ = S∗. For that, be x̄ = arg minx∈X φ(x) then x̄ ∈ C(x) for all x ∈ X because

φ(x̄) ⩽ φ(x) ∀x ∈ X.

Furthermore

f(x̄,y) = φ(y) −φ(x̄) ⩾ 0 ∀y ∈ X.

Therefore, x̄ ∈ S∗ and arg minx∈X φ(x) ⊂ S∗. On the other hand, let x∗ ∈ S∗, then

x∗ ∈ C(x) ∀x ∈ X.

This means φ(x∗) ⩽ φ(x) for all x ∈ X. Therefore, x∗ ∈ arg minx∈X φ(x) and S∗ ⊂

arg minx∈X φ(x). In this way, it is proved S∗ = arg minx∈X φ(x). For the second part, we

will proved that S∗ = arg minx∈X φ(x). Let x̄ ∈ arg minx∈X φ(x), then

x̄ ∈ C(x̄) and f(x̄,y) = φ(y) −φ(x) ⩾ 0 ∀y ∈ X.

Therefore, x̄ ∈ S∗ and arg minx∈X φ(x) ⊂ S∗. Now, let x̂ ∈ S∗, then

x̂ ∈ C(x̂) and f(x̂,y) = φ(y) −φ(x̂) ⩾ 0.

So we have φ(x̂) ⩽ φ(y) for all y ∈ X. This means that x̂ ∈ arg minx∈X φ(x) and

S∗ ⊂ arg minx∈X φ(x). So, it follows the equality S∗ = arg minx∈X φ(x). Therefore, the

non-emptyness of S∗ and S∗ depends on arg minx∈X φ(x) to be non-empty.

Example 7 (Multi-objective problem). Let Φ : X → Rm be a vector-valued function, i.e.,

Φ(x) = (φ1(x), . . . ,φm(x)), where φi : X → R is a scalar function for each i = 1, . . . ,m.

The multi-objective optimization problem of finding Pareto and weak Pareto points of Φ

is denoted by

Rm
+ -argmin{Φ(x) : x ∈ X} and Rm

+ -argminw{Φ(x) : x ∈ X},

respectively, where a point x∗ ∈ X is a Pareto point of Φ if there is no y ∈ X such that

φi(y) ⩽ φi(x
∗), for every i = 1, . . . ,m, with Φ(y) ̸= Φ(x∗) and a point x∗ ∈ X is a weak

Pareto point of Φ if there is no y ∈ X such that φi(y) < φi(x
∗), for all i = 1, . . . ,m.

The problem of finding weak Pareto points of Φ can be viewed as the quasi-equilibrium

problem QEP by taking

C(x) = {z ∈ X : φi(x) −φi(z) ⩾ 0, for some i = 1, . . . ,m} (4.18)
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and

f(x,y) = max
1⩽i⩽m

{φi(y) −φi(x)}. (4.19)

Note that x ∈ C(x), for every x ∈ X, and one can easily prove that Rm
+ -argminw{Φ(x) :

x ∈ X} = S∗ = S∗. To prove the previous equality, let x̄ ∈ Rm
+ -argminw{Φ(x) : x ∈ X},

then there is no y ∈ X such that φi(y) < φi(x̄), for every i = 1, . . . ,m, with Φ(y) ̸=

Φ(x∗). This means that, there is p ∈ [1, · · · ,m] such that φp(y)−φp(x̄) ⩾ 0. Therefore,

x̄ ∈ C(x) for all x ∈ X. Furthermore

f(x̄,y) = max
1⩽i⩽m

{φi(y) −φi(x̄)} ⩾ φp(y) −φp(x̄) ⩾ 0.

Consequently, x̄ ∈ S∗ and Rm
+ -argminw{Φ(x) : x ∈ X} ⊂ S∗. On the other hand, let

x∗ ∈ S∗, we have x∗ ∈ C(x) for all x ∈ X. Therefore, φi(x) − φi(x
∗) ⩾ 0, for some i =

1, · · · ,m}. This means that x∗ ∈ Rm
+ -argminw{Φ(x) : x ∈ X} and consequently S∗ =

Rm
+ -argminw{Φ(x) : x ∈ X}. For the proof of the second part, let x̄ ∈ Rm

+ -argminw{Φ(x) :

x ∈ X}, then there is no y ∈ X such that φi(y) < φi(x̄), for every i = 1, · · · ,m, with

Φ(y) ̸= Φ(x̄). This means that, there is j ∈ [1, · · · ,m] such that φj(y) − φj(x̄) ⩾ 0.

Therefore, x̄ ∈ C(x) for all x ∈ X. In particular,x̄ ∈ C(x̄). Furthermore,

f(x̄,y) = max
1⩽i⩽m

{φi(y) −φi(x̄)} ⩾ φj(y) −φj(x̄) ⩾ 0. ∀y ∈ X.

Consequently, Rm
+ -argminw{Φ(x) : x ∈ X} ⊂ S∗. Now, let w ∈ S∗, then

w ∈ C(w) and f(w,y) = max
1⩽i⩽m

{φi(y) −φi(w)} ⩾ 0 ∀y ∈ X.

This implies that there is r ∈ [1, · · · ,m] such that φr(y) − φr(w) ⩾ 0. Therefore w ∈

Rm
+ -argminw{Φ(x) : x ∈ X} and finally S∗ = Rm

+ -argminw{Φ(x) : x ∈ X}.

If we replace the mapping C in (4.18) by

C(x) = {z ∈ X : φi(x) −φi(z) ⩾ 0, for some i = 1, · · · ,m}

and the bifunction f in (4.19) by

f(x,y) =
m∑
i=1

(φi(y) −φi(x)),

we have the problem of finding Pareto points of Φ can be viewed as the quasi-equilibrium

problem QEP and Rm
+ -argmin{Φ(x) : x ∈ X} = S∗ = S∗. To prove the previous equality,

let z̄ ∈ Rm
+ -argmin{Φ(x) : x ∈ X}, then there is no y ∈ X such that φi(y) ⩽ φi(z̄), for
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every i = 1, . . . ,m, with Φ(y) ̸= Φ(z̄). This means that, there is p ∈ [1, · · · ,m] such

that φp(y) −φp(z̄) > 0. Therefore, z̄ ∈ C(x) for all x ∈ X. Furthermore

f(z̄,y) =
m∑

i=1,i ̸=p

(φi(y) −φi(z̄)) + (φp(y) −φp(z̄)) ⩾ φp(y) −φp(z̄ ⩾ 0.

Consequently, z̄ ∈ S∗ and Rm
+ -argmin{Φ(x) : x ∈ X} ⊂ S∗. On the other hand, let

x∗ ∈ S∗, we have x∗ ∈ C(x) for all x ∈ X. Therefore φi(x) − φi(x
∗) ⩾ 0, for some i =

1, . . . ,m}. This means that x∗ ∈ Rm
+ -argmin{Φ(x) : x ∈ X} and consequently S∗ =

Rm
+ -argmin{Φ(x) : x ∈ X}. For the proof of the second part, let z̄ ∈ Rm

+ -argmin{Φ(x) :

x ∈ X}, then there is no y ∈ X such that φi(y) ⩽ φi(z̄), for every i = 1, . . . ,m, with

Φ(y) ̸= Φ(z̄). This means that, there is j ∈ [1, · · ·m] such that φj(y) − φj(x̄) ⩾ 0.

Therefore z̄ ∈ C(x) for all x ∈ X. In particular, z̄ ∈ C(z̄). Furthermore,

f(z̄,y) =
m∑

i=1,i ̸=j

(φi(y) −φi(z̄)) + (φj(y) −φj(z̄)) ⩾ φj(y) −φj(z̄) ⩾ 0.

Consequently Rm
+ -argmin{Φ(x) : x ∈ X} ⊂ S∗. Now, let v ∈ S∗, then

v ∈ C(v) and f(v,y) =
m∑
i=1

(φi(y) −φi(v) ⩾ 0 ∀y ∈ X.

This implies that there is r ∈ [1, . . . ,m] such that φr(y) − φr(v) ⩾ 0. Therefore, v ∈

Rm
+ -argmin{Φ(x) : x ∈ X} and finally S∗ = Rm

+ -argmin{Φ(x) : x ∈ X}. Therefore, the

non-emptyness of the sets S∗ and S∗ depend on the non-emptyness of the solution sets

Rm
+ -argmin{Φ(x) : x ∈ X} and Rm

+ -argminw{Φ(x) : x ∈ X}.

We will consider two kinds of erro criterior. In the first one, our method will solve the

perturbed regularized equilibrium problem

fek(x,y) = fk(x,y) − ⟨ek,y− x⟩ (4.20)

instead of solving the exact regularized equilibrium problem

fk(x,y) = f(x,y) + γk⟨x− xk,y− x⟩.

In this case, we will suppose that at each iterate the error ek committed is controlled,

i.e., it satisfies one of the following conditions, for all k ∈ N:

(E1) ∥ek∥ ⩽ ∥xk+1 − xk∥;
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Algorithm 7 : Inexact Proximal Point Method
1: Take a bounded auxiliary sequence of positive parameters {γk} such that 0 < a ⩽

γk ⩽ b, for all k ∈ N, and choose x0 ∈ X

2: Given xk ∈ X, compute

xk+1 ∈ SEP(f
e
k,Ck), (4.21)

where fek(x,y) = f(x,y) + γk⟨x − xk,y − x⟩ − ⟨ek,y − x⟩, Ck = C(xk) and the error

{ek} satisfies (E1) or (E2)

3: If xk+1 = xk, stop and return xk. Otherwise, set k = k+ 1 and retourn to step 2.

(E2) ∥xk+1 − xk − ek∥ ⩽ max
{
∥xk+1 − xk∥, ∥ek∥

}
.

This method is stated in Algorithm 7 in the sequel.

Remark 8. Note that if ek = 0, for all k ∈ N, in (4.20), then Algorithm 7 becomes

the proximal point method proposed by [47]. Since xk+1 is a solution to an equilibrium

problem and from [24, Proposition 3.1] the set SEP(f
e
k,Ck) is non-empty, then Algorithm

7 is well-defined. It is worth mentioning that even in the EP setting, Algorithm 7 is not

the same as the inexact algorithm proposed in [24, Algorithm I], where a projection step

is performed after solving the inexactly regularized equilibrium problem. Furthermore, the

assumptions (E1) and (E2) in the error {ek} are well known in the literature of inexact

proximal point methods; see for instance [7][20],[41],[45],[48].

In the second method, we will consider as the next iterate xk+1 ∈ X a point close

enough to the exact solution controlled by a summable sequence of errors {εk}. While

the exact solution needs to find a point belonging to C(xk) which is a solution of the

equilibrium problem with the regularized bifunction fk, this inexact version takes as its

next iteration any point in an ε-neighborhood (not necessarily in C(xk)) of the exact

solution of the subproblem. This method is stated in Algorithm 8 in the sequel.

Remark 9. Clearly, if the sequence of error {εk} is taken equal to zero, for all k ∈ N,

in Algorithm 8, then xk+1 = vk ∈ SEP(fk,Ck) is the exact solution of the subproblems,

and hence, Algorithm 8 becomes the proximal point method proposed by [47]. The well-

definition of Algorithm 8 comes from the well-definition of the exact method; see [47,

Remark 3.1]. On the other hand, if Ck = X, for all k ∈ N, then Algorithm 8 retrieves the

inexact proximal point method proposed by Konnov [28] for solving equilibrium problems.
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Algorithm 8 : Inexact Proximal Point Method
1: Take a bounded auxiliary sequence of positive parameters {γk} such that 0 < a ⩽

γk ⩽ b, for all k ∈ N, and choose x0 ∈ X;

2: Given εk ⩾ 0, xk ∈ X and vk ∈ SEP(fk,Ck), compute xk+1 ∈ X such that

∥xk+1 − vk∥ ⩽ εk with
∞∑

k=0

εk < +∞, (4.22)

where fk(x,y) = f(x,y) + γk⟨x− xk,y− x⟩ and Ck = C(xk).

The summable assumption on the error {εk} in (4.22) is standard, and it was considered,

for instance, in [28][45][48].

Remark 10. See that, from the exact method, we know that the algorithm stops when

vk = vk−1. Since ∥xk+1 − vk∥ < εk and ∥xk − vk−1∥ < εk−1. We verified euristically that

assuming xk+1 = xk is a good stopping criterion for the algorithm.

4.2.1 Convergence analysis

Next, we present the convergence results for the proposed methods. In the case of

Algorithm 7, we will consider the error satisfying each one of the assumptions (E1) and

(E2) separately. Let us start with Algorithm 7.

Proposition 13. Let {xk} be the sequence generated by Algorithm 7. Additionally, suppose

that the following conditions hold:

+∞∑
k=0

∥ek∥ < +∞ (4.23)

+∞∑
k=0

| ⟨ek, xk+1⟩ |< +∞. (4.24)

One has,

(i) If S∗ ̸= ∅, then {xk} is quasi-Fejér convergent to S∗;

(ii) If S∗ ̸= ∅ and S∗ ⊂ Ck, for all k ∈ N, then {xk} is quasi-Fejér convergent to S∗;

Therefore, if item (i) or (ii) holds, then limk→+∞ ∥xk+1 − xk∥ = 0.
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Proof: To prove item (i) take x∗ ∈ S∗. Since S∗ ⊂ SEP(f,C(z)), for all z ∈ X, we

have that x∗ ∈ SEP(f,C(z)) and hence f(x∗,y) ⩾ 0, for all y ∈ C(z). From iii) in

Assumption 1, f is monotone, then we have that f(y, x∗) ⩽ 0, for all y ∈ C(z). This

implies that x∗ ∈ Sd
EP(f,C(z)), for all z ∈ X, in particular, for z = xk. This means that

x∗ ∈ Sd
EP(f,Ck). From the definition of the algorithm, we have that xk+1 ∈ SEP(f

e
k,Ck).

Thus, applying Proposition 12 with f̃ = fek, x̃ = xk+1, x̄ = xk we have

∥xk+1 − x∗∥2 + ∥xk+1 − xk∥2 ⩽ ∥xk − x∗∥2 −
2
γk

⟨ek, x∗ − xk+1⟩,∀k ∈ N. (4.25)

This implies that

∥xk+1 − x∗∥2 ⩽ ∥xk − x∗∥2 −
2
γk

⟨ek, x∗ − xk+1⟩, ∀k ∈ N,

and hence, we obtain

∥xk+1 − x∗∥2 ⩽ ∥xk − x∗∥2 +
2
γk

(
| ⟨ek, xk+1⟩ | +∥ek∥∥x∗∥

)
⩽ ∥xk − x∗∥2 +

2
a

(
| ⟨ek, xk+1⟩ | +∥ek∥∥x∗∥

)
.

Taking ϵk = 2
a

(
| ⟨ek, xk+1⟩ | +∥ek∥∥x∗∥

)
from (4.23) and (4.24), we have that

∑∞
k=0 εk <∞. Thus, {xk} is quasi-Fejér convergent to S∗ and the first assertion is proved.

The proof of item (ii) is quite similar to the previous one. If we prove that x∗ ∈ S∗

implies that x∗ ∈ Sd
EP(f,Ck), for all k ∈ N, thus the remainder of the proof is equal to

the item (i) from (4.25) on. Indeed, if x∗ ∈ S∗, then x∗ ∈ C(x∗) ⊂ X and f(x∗,y) ⩾ 0,

for all y ∈ X. From the monotonicity of f, we have that f(y, x∗) ⩽ 0, for all y ∈ X, and

hence, x∗ ∈ Sd
EP(f,X). Combining this fact with S∗ ⊂ Ck ⊂ X, for all k ∈ N, we have

that x∗ ∈ Sd
EP(f,Ck) and the assertion is proved.

To prove the last assertion, first note that since {γk} is bounded and assumptions

(4.23) and (4.24) hold, we have that limk→+∞ 2
γk
⟨ek, x∗ − xk+1⟩ = 0. Furthermore, from

Lemma 3, we have that the sequence {∥xk − x∗∥} converges, for all x∗ ∈ S∗ or x∗ ∈ S∗.

From (4.25), we obtain

∥xk+1 − x∗∥2 ⩽ ∥xk+1 − x∗∥2 + ∥xk+1 − xk∥2 ⩽ ∥xk − x∗∥2 −
2
γk

⟨ek,y− xk+1⟩.

Taking the limit as k → +∞ in the last inequality, we obtain limk→+∞ ∥xk+1 − xk∥ = 0

and the proof is concluded.
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Remark 11. Assumptions (4.23) and (4.24) are well known for inexact proximal al-

gorithms in different contexts; see, for instance, [7][12],[27][39]. As remarked by Eck-

stein [12] it may appear somewhat unnatural that (4.24) involves not only the error se-

quence but also the iterate xk+1 which cannot be determined before using the algorithm.

However, the requirement (4.24) should not be too difficult to enforce in practice. For

instance, one could stop the process of computing xk+1 as soon as ∥ek∥ ⩽ Lαk and

| ⟨ek, xk+1⟩ |⩽ L̂αk, where L, L̂ ⩾ 0 and α ∈ [0, 1). Furthermore, if one knows a pri-

ori that {xk} is bounded, then (4.24) is a simple consequence of (4.23).

Remark 12. Note that if {xk} is generated by Algorithm 7 with the error given by (E2),

then Proposition 13 holds in the absence of the assumptions (4.23) and (4.24). Indeed,

from the second part of Proposition 12 with f̃ = fek, x̃ = xk+1 and x̄ = xk, we have that

∥xk+1 − x∗∥2 + ∥xk+1 − xk∥2 ⩽ ∥xk − x∗∥2, ∀k ∈ N, (4.26)

which implies that ∥xk+1 − x∗∥ ⩽ ∥xk − x∗∥, for all k ∈ N, and hence, {xk} is Fejér

convergent to S∗. Moreover, if the sequence {∥xk − x∗∥} is non-increasing and bounded

from below, then it converges for all x∗ ∈ S∗. Thus, Taking the limit as k → +∞ in

(4.26), we have that limk→+∞ ∥xk+1 − xk∥ = 0. This remark is also true if we replace S∗

by S∗.

Next, we show the main convergence result for Algorithm 7. To this end, we will use

Proposition 13. In view of Remark 12, we will suppose that assumptions (4.23) and (4.24)

hold only if the error {ek} satisfies (E1). Otherwise, if Algorithm 7 uses the error {ek}

with (E2), we will replace assumptions (4.23) and (4.24) by the following:

lim
k→∞ ∥ek∥ = 0. (4.27)

Theorem 12. Let {xk} be the sequence generated by Algorithm 7 and suppose that S∗ or

S∗ is non-empty. In addition, if (E1) is used, we suppose the assumptions (4.23) and

(4.24) hold. Otherwise, if (E2) is used, we assume that (4.27) holds. Then, every weak

cluster point of {xk} is a solution to the QEP(f,C).

Proof: If S∗ is non-empty (respectively, S∗ is non-empty) from Proposition 13 (i) (respec-

tively, Proposition 13 (ii)), we have that {xk} is quasi-Fejér convergent to S∗ (respectively,

S∗). Thus, from Lemma 2, {xk} is bounded. Let {xkj} be a subsequence of {xk} weakly
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converging to x∗. From the definition of the algorithm, we have that xkj+1 ∈ C(xkj) and

hence, from the M-continuity of C, we obtain that x∗ ∈ C(x∗) taking into account that

by Proposition 13 (ii), xkj+1 ⇀ x∗.

Now, for any y ∈ C(x∗), again from the M-continuity of C, there exists a sequence

{ykj} such that ykj → y and ykj ∈ C(xkj). Since xkj+1 ∈ SEP(f
e
kj

,Ckj
), then

fekj
(xkj+1, z) ⩾ 0, ∀z ∈ C(xkj),

which means that

0 ⩽ f(xkj+1, z) + γkj
⟨xkj+1 − xkj , z− xkj+1⟩− ⟨ekj , z− xkj+1⟩, ∀z ∈ C(xkj). (4.28)

We prove that the result holds using the two criteria (E1) and (E2) for the error {ek}.

First, let us consider Algorithm 7 with the error {ek} satisfying condition (E1). From

(4.28) with z = ykj we have

0 ⩽ f(xkj+1,ykj) + γkj
⟨xkj+1 − xkj ,ykj − xkj+1⟩− ⟨ekj ,ykj − xkj+1⟩

⩽ f(xkj+1,ykj) + γkj
∥xkj+1 − xkj∥ ∥ykj − xkj+1∥+ ∥ekj∥ ∥xkj+1 − ykj∥

⩽ f(xkj+1,ykj) + γkj
∥xkj+1 − xkj∥ ∥ykj − xkj+1∥+ ∥xkj+1 − xkj∥ ∥xkj+1 − ykj∥,

where the second inequality comes from the Cauchy-Schwarz inequality and the last in-

equality was applied (E1). Taking the limit as j → +∞ in the last inequality and taking

into account that the sequences {γk}, {xk} and {yk} are bounded, Proposition 13 (ii) and

i) in Assumption 1, we obtain

f(x∗,y) ⩾ 0, ∀y ∈ C(x∗).

This means that x∗ ∈ SQEP(f,C) and the first part of the theorem is proved.

Let us now assume that Algorithm 7 uses the error {ek} satisfying condition (E2).

Rewriting (4.28) with z = ykj , we have

0 ⩽ f(xkj+1,ykj) + γkj
⟨xkj+1 − xkj − ekj ,ykj − xkj+1⟩

⩽ f(xkj+1,ykj) + γkj
∥xkj+1 − xkj − ekj∥ ∥ykj − xkj+1∥. (4.29)

From (E2), if ∥xkj+1 − xkj − ekj∥ ⩽ ∥xkj+1 − xkj∥, then (4.29) implies

0 ⩽ f(xkj+1,ykj) + γkj
∥xkj+1 − xkj∥ ∥ykj − xkj+1∥. (4.30)
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Otherwise, if ∥xkj+1 − xkj − ekj∥ ⩽ ∥ekj∥, then (4.29) implies

0 ⩽ f(xkj+1,ykj) + γkj
∥ekj∥ ∥ykj − xkj+1∥. (4.31)

Taking the limit as j → +∞, in (4.30) and (4.31), and taking into account that the

sequences {γk}, {xk} and {yk} are bounded, from Proposition 13 (ii) limj→+∞ ∥xkj+1 −

xkj∥ = 0 and limk→∞ ∥ek∥ = 0 (see (4.27) in Remark 12) and i) in Assumption 1, we

have

f(x∗,y) ⩾ 0, ∀y ∈ C(x∗),

having in mind that C is M-continuous. This means that x∗ ∈ SQEP(f,C) and the second

part of the theorem are proved.

Now, we show the convergence results for Algorithm 8. In contrast with Algorithm 7,

here we will consider only the case where S∗ is non-empty.

Proposition 14. Let {xk} be the sequence generated by Algorithm 8. Then, the following

assertions hold:

i) {xk} is quasi-Fejér convergent to S∗;

ii) limk→+∞ ∥xk+1 − xk∥ = 0 and limk→+∞ ∥xk − vk∥ = 0.

Proof: (i): Take any x∗ ∈ S∗. Thus, from iii) in Assumption 1, we have that f(vk, x∗) ⩽ 0,

for all k ∈ N. Now, from the definition of Algorithm 8, we have that vk ∈ SEP(fk,Ck),

i.e.,

f(vk,y) + γk⟨vk − xk,y− vk⟩ ⩾ 0, ∀y ∈ Ck.

Setting y = x∗, we obtain

⟨vk − xk, x∗ − vk⟩ ⩾ −
f(vk, x∗)

γk

⩾ 0, ∀k ∈ N. (4.32)

Thus,

∥xk − x∗∥2 = ∥(xk − vk) + (vk − x∗)∥2

= ∥xk − vk∥2 + 2⟨xk − vk, vk − x∗⟩+ ∥vk − x∗∥2

⩾ ∥xk − vk∥2 + ∥vk − x∗∥2 (4.33)

⩾ ∥vk − x∗∥2, ∀k ∈ N, (4.34)
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where in the first inequality we used (4.32). Therefore,

∥xk+1 − x∗∥ ⩽ ∥xk+1 − vk∥+ ∥vk − x∗∥

⩽ ∥xk − x∗∥+ εk, ∀k ∈ N, (4.35)

where we used both (4.22) and (4.34) in the second inequality. Thus, {xk} is quasi-Fejér

convergent to S∗.

(ii): From Lemma 3, we have that the sequence {∥xk − x∗∥} converges, for all x∗ ∈ S∗.

Let us denote limk→+∞ ∥xk − x∗∥ = µ ⩾ 0. Note that limk→+∞ ∥vk − x∗∥ = µ. Indeed,

combining (4.34) and (4.35), we have

∥xk+1 − x∗∥ ⩽ ∥vk − x∗∥+ εk ⩽ ∥xk − x∗∥+ εk.

Taking the limit as k → +∞ in the last inequality and taking into account that limk→∞ εk =

0, we prove the claim. Now, from (4.33) and (4.34), we have

∥xk − x∗∥2 ⩾ ∥xk − vk∥2 + ∥vk − x∗∥2 ⩾ ∥vk − x∗∥2, ∀k ∈ N.

Taking the limit as k → +∞ in the last inequality and taking into account that limk→∞ ∥xk−

x∗∥ = limk→∞ ∥vk − x∗∥ = µ, we prove the second assertion of item (ii). On the other

hand,

0 ⩽ ∥xk+1 − xk∥ ⩽ ∥xk+1 − vk∥+ ∥vk − xk∥ ⩽ εk + ∥vk − xk∥.

Taking the limit as k → +∞ in the last inequality and taking into account that limk→∞ ∥xk−

vk∥ = 0 and limk→∞ εk = 0, we prove the first assertion of item (ii) and the proof is con-

cluded.

Next, we show the main convergence result for Algorithm 8.

Theorem 13. Let {xk} be the sequence generated by Algorithm 8. Then, every weak

cluster point of {xk} is a solution to the QEP(f,C).

Proof: From Proposition 14 (i), we have that {xk} is quasi-Fejér convergent to S∗. Thus,

from Lemma 2, {xk} is bounded. Let {xkj} be a subsequence of {xk} weakly converging to

x∗. Note that from Proposition 14 (ii), we have that xkj+1 ⇀ x∗ and vkj ⇀ x∗. Now,

from the definition of the algorithm, vk ∈ SEP(fk,Ck) for all k ∈ N, and, in particular,

vkj ∈ C(xkj). Therefore, since C is M-continuous, we obtain that x∗ ∈ C(x∗). On the

other hand,

0 ⩽ f(vkj ,y) + γkj
⟨vkj − xkj ,y− vkj⟩

⩽ f(vkj ,y) + γkj
∥vkj − xkj∥ ∥y− vkj∥, ∀y ∈ Ckj

.
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Taking the limit as j → +∞ in last inequality taking into account that the sequences

{γk}, {xk} and {vk} are bounded, from Proposition 14 (ii) limj→+∞ ∥xkj − vkj∥ = 0 and i)

in Assumptions 1, we have

f(x∗,y) ⩾ 0, ∀y ∈ C(x∗),

having in mind that C is M-continuous. This means that x∗ ∈ SQEP(f,C) and the proof

is completed.

4.2.2 Numerical experiments

In this section, we illustrate the performance of the proposed methods on some test

problems. The first and second examples are 2-dimensional and 5-dimensional academic

quasi-equilibrium problems, respectively, considered in [47] and the third example is a

quasi-variational inequality formulation of a generalized Nash game given by [49]. In each

example, we compare the performance of both inexact versions with the exact proximal

point method for quasi-equilibrium problems proposed by [47]. Since the main novelty

of this paper is to propose inexact versions of the proximal point method and investigate

their performance compared with the exact method considered in [47], we refrain from

discussing the computational efficiency of other methods, and hence we skip discussions

of comparisons of the proposed methods with other methods.

In order to investigate the performance of Algorithm 7 and 8, we consider these al-

gorithms such that all the iterations xk do not coincide with the corresponding iteration

of the proximal point method. For Algorithm 7, this is shown in Figures 4.5, 4.7 and

4.9, where ∥ek∥ ≠ 0, for all k. In Algorithm 8, we consider xk+1 ∈ B[vk, ϵk] = {x ∈

X : ∥x − vk∥ = ϵk}, where vk is the (exact) iteration of the proximal point method and

ϵk = 1
k2 .

The algorithm is coded in MATLAB R2020b on an 8 GB RAM Intel Core i7 to obtain

the numerical results. The stopping rule is ∥xk+1 − xk∥ < 10−5. We take γk = γ, for all

k ∈ N, and the parameter γ will be specified in each problem. We solve the subproblem by

using the regularized method in Muu and Quoc [35]. They consider the following iterative

method for solving equilibrium problems as in (2.1): for any starting point x0 ∈ X and

γ > 0, given xk ∈ X define xk+1 ∈ X such that

xk+1 = arg min
y∈X

{γf(xk,y) +
1
2
∥y− xk∥2}. (4.36)
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The solutions of the subproblems in (4.36) are computed by a built -in MATLAB solver:

“fmincon" if we deal with a constrained non-linear problem and “quadprog" if the sub-

problem reduces to a quadratic programming with linear constraints.

Next, we present the examples and the results of the (inexact) Algorithm 7 and 8

comparing their performance with the (exact) Proximal Point Method (PPM) proposed

in [47]. To this end, we run the three algorithms with 100 random starting points in

the box [−5, 5]n ⊂ Rn for different values of γ > 0 in the method (4.36) for solving the

subproblems. At each run, the methods start from the same initial point and use the

same constant γ. In the tables, we show the results of all methods in terms of the number

of iterations until the stopping rule is satisfied and the accuracy Υ(xk) (cf. Proposition

6). In the tables, min. iter., max. iter. and aver. iter. denote the minimal, maximum

and average of iterations in 100 runs of the methods, respectively, as well as aver. Υ(xk)

stands for the average of the values Υ(xk) in 100 runs, where xk is the solution found

by the methods. In the figures, we consider a particular run of each method (using the

same x0 and γ) presenting the accuracy at each step as well as the error sequences of the

Algorithm 7.

Example 8. [47, Example 4.1] Consider the 2-dimensional non-smooth quasi-equilibrium

problem defined by the bifunction

f(x,y) =| y1 | − | x1 | +y2
2 − x2

2

and the multivalued mapping C given by

C(x) =

{
y ∈ R2

+ ; y1 + y2 = 1 +
| x1 |

1+ | x1 |

}
.

One can check that f is monotone and the solution set is the single point x∗ = (1, 1
2).

Furthermore, if X = {(x1, x2) ∈ R2
+ : |x1| = 1 and x2 ⩾ 1

2 }, then x∗ ∈ S∗. On the other

hand, since x∗ ∈ C(x∗), we have that S∗ ̸= ∅ for every X ⊂ R2 such that EP(f,X) has a

non-empty solution set SEP.

In Tables 4.4, 4.5 and 4.6, we can see that Algorithm 7 outperforms PPM and Algo-

rithm 8 in both the number of iterations and the median of the quality of the solution

found in all cases considered. On the other hand, Algorithm 8 under-performs PPM in all

cases considered. In particular, for γ = 1.5 (see Table 4.6) the performance of Algorithm

8 and PPM was similar.



Chapter 4. Quasi-Equilibrium Problems:Exact and Inexact Versions 49

Table 4.4: Results for Example 8 with γ = 5.5.

Algorithm min. iter. (k) max. iter. (k) aver. iter. (k) aver. Υ(xk)

Algorithm 7 7 10 8.65 7.9279e-09

Algorithm 8 16 16 16 9.1332e-07

PPM [47] 8 13 11.01 2.3026e-08

Table 4.5: Results for Example 8 with γ = 3.5.

Algorithm min. iter. (k) max. iter. (k) aver. iter. (k) aver. Υ(xk)

Algorithm 7 6 10 8.75 1.8384e-08

Algorithm 8 15 16 15.74 9.1429e-07

PPM [47] 6 14 12.47 2.4065e-08

Table 4.6: Results for Example 8 with γ = 1.5.

Algorithm min. iter. (k) max. iter. (k) aver. iter. (k) aver. Υ(xk)

Algorithm 7 8 14 12.39 4.4741e-08

Algorithm 8 15 20 17.87 7.2625e-07

PPM [47] 11 20 17.44 8.1751e-08

In Figures 4.4 and 4.5, we consider random starting points described in each figure for

γ = 5.5 (in Figures 4.4a and 4.5a), γ = 3.5 (in Figures 4.4b and 4.5b) and γ = 1.5 (in

Figures 4.4c and 4.5c).

(a) x0 = (−1.24, 0.46) (b) x0 = (0.61,−1.04) (c) x0 = (−1.01, 0.15)

Figure 4.4: Accuracy Υ(xk) in each method (using log. scale) for Ex. 8.
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Considering different starting points and values for the constant γ, we can see in

Figure 4.4 that Algorithm 7 obtains a similar performance in terms of the accuracy Υ(xk)

to the PPM but in fewer iterations. In this context, Algorithm 8 underperforms Algorithm

7 and PPM in both accuracy and number of iterations. In Figure 4.5, we show that the

error {ek} and the sequence generated by Algorithm 7 satisfy the assumptions (E1) and

(E2) for Example 8.
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Figure 4.5: Algorithm 7: error satisfying (E1) and (E2) for Ex. 8.

Example 9. [47, Example 4.2] Consider the quasi-equilibrium problem where the multi-

valued mapping C is given by

C(x) =
∏

1⩽i⩽5

Ci(x),

where for each x ∈ R5 and each i, the set Ci(x) is defined by

Ci(x) =

{
yi ∈ R ; yi +

∑
1⩽j⩽5, j̸=i

xj ⩾ −1

}

and the bifunction f is of the form

f(x,y) = ⟨Px+Qy+ q, y− x⟩,

in which the matrices P, Q and the vector q are given by

P =



3.1 2 0 0 0

2 3.6 0 0 0

0 0 3.5 2 0

0 0 2 3.3 0

0 0 0 0 3


; Q =



1.6 1 0 0 0

1 1.6 0 0 0

0 0 1.5 1 0

0 0 1 1.5 0

0 0 0 0 2


and q =



1

−2

−1

2

−1


.
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Note that this problem, in general, is not a quasi-variational inequality problem. The

bifunction f is monotone and it comes from the Nash-Cournot equilibrium model; for more

details see [49] and references therein. Now, let us consider X = {x ∈ R5 :
∑5

i=1 xi ⩾

−1; xi ∈ [−5, 5]}. One has

x ∈ C(x) =

n∏
i=1

Ci(x) ⇔ xi ∈ Ci(x) ⇔
5∑

i=1

xi ⩾ −1.

Therefore, x ∈ C(x), for all x ∈ X. Moreover, from [42, Section 6], we have that x∗ =

[−0.725, 0.803, 0.719,−0.865, 0.250] satisfies f(x∗,y) ⩾ 0, for all y ∈ X. Thus, x∗ ∈ S∗.

In Tables 4.7, 4.8 and 4.9, we can see that Algorithm 7 outperforms PPM and Algo-

rithm 8 in both the number of iterations and the median of the quality of the solution

found in all cases considered. On the other hand, Algorithm 8 underperforms PPM in

all cases considered, but for γ = 0.4 (see Table 4.7) and γ = 0.5 (see Table 4.8) the

performance of Algorithm 8 and PPM was similar.

Table 4.7: Results for Example 9 with γ = 0.4.

Algorithm min. iter. (k) max. iter. (k) aver. iter. (k) aver. Υ(xk)

Algorithm 7 13 18 15.45 1.1330e-07

Algorithm 8 16 20 18.27 9.9584e-07

PPM [47] 16 20 18.08 1.2109e-07

Table 4.8: Results for Example 9 with γ = 0.5.

Algorithm min. iter. (k) max. iter. (k) aver. iter. (k) aver. Υ(xk)

Algorithm 7 11 16 12.74 6.7091e-08

Algorithm 8 15 18 15.85 1.0383e-06

PPM [47] 12 18 15.20 8.4498e-08

In Figures 4.6 and 4.7, we consider random starting points described in each figure for

γ = 0.4 (in Figures 4.6a and 4.7a), γ = 0.5 (in Figures 4.6b and 4.7b) and γ = 0.6 (in

Figures 4.6c and 4.7c).

Considering different starting points and values for the constant γ, we can see in

Figure 4.6 that Algorithm 7 obtains a similar performance in terms of the accuracy Υ(xk)
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Table 4.9: Results for Example 9 with γ = 0.6.

Algorithm min. iter. (k) max. iter. (k) aver. iter. (k) aver. Υ(xk)

Algorithm 7 10 18 13.03 1.6718e-08

Algorithm 8 14 16 14.68 1.1231e-06

PPM [47] 9 16 13.43 3.1780e-08
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Figure 4.6: Accuracy Υ(xk) in each method (using log. scale) for Ex. 9.
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Figure 4.7: Algorithm 7: error satisfying (E1) and (E2) for Ex. 9.

to the PPM but in less iterations except in Figure 4.7c where these two methods have

similar performance also in number of iterations when we take γ = 0.6. As we can see

in Table 4.9, in this case (γ = 0.6) Algorithm 7 slightly wins the PPM in the median of

iterations and accuracy. On the other hand, Algorithm 8 underperforms Algorithm 7 and

PPM in both accuracy and number of iterations but with similar performance for γ = 0.4

and γ = 0.5; see Table 4.7 and 4.8, respectively. In Figure 4.7, we show that the error

{ek} and the sequence generated by Algorithm 7 satisfy the assumptions (E1) and (E2)

for Example 9.
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Example 10. [49, Example 2] Consider the 2-dimensional quasi-variational inequality

problem given by

F(x) =

(
2x1 +

8
3
x2 − 34, 2x2 +

5
4
x1 − 24.25

)
and the multivalued mapping defined by C(x) = C1(x2) × C2(x1), where C1(x2) = {y1 ∈

R ; 0 ⩽ y1 ⩽ 10, y1 ⩽ 15 − x2} and C2(x1) = {y2 ∈ R ; 0 ⩽ y2 ⩽ 10, y2 ⩽ 15 − x1}. Its

solution set is the point (5, 9) and the line segment [(9, 6), (10, 5)]. One can check that

the equilibrium bifunction is monotone. Furthermore, if X = {(x1, x2) ∈ R2 : 0 ⩽ x1 ⩽

6 and 0 ⩽ x2 ⩽ 10} and x∗ = (5, 9), then we can prove that x∗ ∈ S∗ and x∗ ∈ S∗.

In Tables 4.10, 4.11 and 4.12, we can see that Algorithm 7 outperforms PPM and

Algorithm 8 both in number of iterations and median of the quality of the solution found

in all cases considered. In this example, Algorithm 8 and PPM have similar performance

in all cases considered in both number of iterations and accuracy. These facts are clearly

shown in Figure 4.8. In Figure 4.9, we show that the error {ek} and the sequence generated

by Algorithm 7 satisfy the assumptions (E1) and (E2) for Example 10.

Table 4.10: Results for Example 10 with γ = 0.15.

Algorithm min. iter. (k) max. iter. (k) aver. iter. (k) aver. Υ(xk)

Algorithm 7 244 288 251.86 8.3892e-07

Algorithm 8 351 376 358.70 1.2894e-06

PPM [47] 352 377 359.45 1.2872e-06

Table 4.11: Results for Example 10 with γ = 0.2.

Algorithm min. iter. (k) max. iter. (k) aver. iter. (k) aver. Υ(xk)

Algorithm 7 195 212 203.35 6.2295e-07

Algorithm 8 271 295 277.84 9.9035e-07

PPM [47] 271 298 278.34 9.3600e-07

In Figures 4.8 and 4.9, we consider random starting points described in each figure for

γ = 0.15 (in Figures 4.8a and 4.9a), γ = 0.2 (in Figures 4.8b and 4.9b) and γ = 0.25 (in

Figures 4.8c and 4.9c).
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Table 4.12: Results for Example 10 with γ = 0.25.

Algorithm min. iter. (k) max. iter. (k) aver. iter. (k) aver. Υ(xk)

Algorithm 7 157 160 158.59 4.9615e-07

Algorithm 8 222 255 229.63 7.7335e-07

PPM [47] 222 252 229.49 7.3511e-07
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Figure 4.8: Accuracy Υ(xk) in each method (using log. scale) for Ex. 10.

0 20 40 60 80 100 120 140 160 180 200

iteration (k)

10-6

10-4

10-2

100

102

lo
g
. 
s
c
a
le

||x
k+1

-x
k
||

||x
k+1

-x
k
-e

k
||

||e
k
||

(a) x0 = (−1.80, 0.21)

0 20 40 60 80 100 120 140 160 180 200

iteration (k)

10-6

10-4

10-2

100

102

lo
g
. 
s
c
a
le

||x
k+1

-x
k
||

||x
k+1

-x
k
-e

k
||

||e
k
||

(b) x0 = (−1.24,−0.71)

0 20 40 60 80 100 120 140 160 180 200

iteration (k)

10-6

10-4

10-2

100

102

lo
g
. 
s
c
a
le

||x
k+1

-x
k
||

||x
k+1

-x
k
-e

k
||

||e
k
||

(c) x0 = (−0.38, 0.19)

Figure 4.9: Algorithm 7: error satisfying (E1) and (E2) for Ex. 10.



Chapter 5

Aplication to the Cournot model

The Cournot model of a duopoly is at the origin of game theory; see Cournot [9].

Usually, in textbooks, it has been modelled as an equilibrium problem; see Osborne [37].

Let us see that we can improve its presentation as a quasi-equilibrium problem through

its presentation in mathematics as a Nash Cournot game with a unique shared constraint.

This point of view is well known; see [11]. But almost no effort has been made to show

this in an intuitive way in the context of the Cournot model of a duopoly. The drawback

is that most of the intuitions are lost.

5.1 The viability condition of the Cournot model as an

EP

We recall the celebrated Cournot model of a duopoly. It considers two producers

j = 1, 2 of an homogeneous good that produce the quantities x = (x1, x2) ∈ R2
+ of this

good at the unit costs (c1, c2) ∈ R2
++. In this usual presentation, we will suppose that

unit costs of production are the same: c1 = c2 = c > 0.

The two producers sell this good at the same unit price

p(Q) =

 a−Q ∈ R, if 0 ⩽ Q ⩽ a

0, if Q > a,

where a > 0 is the highest price at which one unit of this good can be sold when Q

is close to zero. This price depends on the total level of production of the duopoly,

Q = x1 + x2 ∈ R+. This formula tells us that the more the producers want to produce

55
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and sell (Q high), the lower the price p(Q) will be. Think about the oil cartel and the

price of oil. The existence of this duopoly requires that the two producers do not produce

too much in total: p(Q) = a −Q ∈ R+, if 0 ⩽ Q ⩽ a. If not, the price of the good will

go to zero: p(Q) = 0, if Q > a. Then, the duopoly breaks (selling at a zero or negative

price is not rewarding).

Let us show that a Cournot equilibrium x∗ verifies the two QEP conditions : x∗ ∈

C(x∗) and f(x∗,y) ⩾ 0, for all y ∈ C(x∗).

5.2 Setting the fixed point condition of a QEP as a

viability condition

The viability constraint of the duopoly is that the price of the final good will be non-

negative, i.e., p(Q) ∈ R+, which means, p(x) = a−(x1 + x2) ⩾ 0. That is, x = (x1, x2) ∈

K, where

K =
{
x = (x1, x2) ∈ R2

+, a− (x1 + x2) ⩾ 0
}

is the two dimensional simplex if a = 1.

Denote by Cj(x−j) =
{
xj ∈ R+, 0 ⩽ xj ⩽ a− x−j

}
, j = 1, 2 and C(x) = C1(x2) ×

C2(x1). It is easy to show that x ∈ C(x) is equivalent to xj ∈ Cj(x−j), j = 1, 2, i.e.,

x ∈ C(x), and hence, it is equivalent to x = (x1, x2) ∈ K. The term shared constraint

comes from the fact of a unique constraint K (i.e., a non-negative selling price) defines all

the moving sets Cj(x−j).

5.3 Setting the equilibrium condition of a QEP

The margins of duopolists are the difference mi = p − ci, i = 1, 2, between the price

of the good and their unit costs of production and selling with c1 = c2 = c > 0. Then, at

the status quo x = (x1, x2) ∈ R2
+ their profits are, for i = 1, 2,

πi =

 pxi − cxi = (p− c)xi = [(a− c− x1 − x2] xi, if x1 + x2 ⩽ a,

−cxi, if x1 + x2 > a.

Suppose now that, in order to maximize his profit, each duopolist i considers changing

unilaterally his production from the status quo. This means that he hopes that the other
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producer will not change, producing the same level as before. That is, each duopolist

maximizes his profit, taking as given what the other duopolist produces and sells at the

status quo x = (x1, x2) ∈ R2
+. Then, if the price of the good is non-negative, i.e., if

the viability constraint p = a − (x1 + x2) ⩾ 0 is satisfied, they solve the unconstraint

interrelated programs

max
{
π1(y1, x2) =

[
a− c− x2 − y1]y1,y1 ∈ X1 = R+

}
and

max
{
π2(x1,y2) =

[
a− c− x1 − y2]y2,y2 ∈ X2 = R+

}
.

Their resolutions provide the best responses x∗,1 = 1
2 [a− c1 − x2] and x∗,2 = 1

2 [a− c2 − x1] .

Then, the Cournot equilibrium is a fixed point x∗ = (x∗,1, x∗,2) ∈ R2
+ such that x∗,1 =

1
2 [a− c1 − x∗,2] and x∗,2 = 1

2 [a− c2 − x∗,1]. This gives, if a > c,

x∗ = (x∗,1, x∗,2) =
1
3
(a− c,a− c) .

In turn, we can verify that x∗ ∈ K. Notice that the definition of a constrained Nash

equilibrium, with the viability constraint K means that the two following equilibrium

conditions are satisfied:

π1(x∗,1, x∗,2) ⩾ π1(y1, x∗,2), ∀ y1 ∈ C1(x∗,2) (5.1)

π2(x∗,1, x∗,2) ⩾ π2(x∗,1,y2), ∀ y2 ∈ C2(x∗,1), (5.2)

where

C1(x∗,2) =
{
y1 ∈ R+, a− c− y1 − x∗,2 ⩾ 0

}
and

C2(x∗,1) =
{
y2 ∈ R+, a− c− x∗,1 − y2 ⩾ 0

}
.

Then, the equilibrium condition of the QEP f(x∗,y) ⩾ 0, for all y ∈ C(x∗) follows from

the definition of a Nikaido-Isoda equilibrium function,

f(x,y) =
[
π1(x1, x2) − π1(y1, x2)

]
+
[
π2(x1, x2) − π2(x1,y2)

]
with the conditions (5.1) and (5.2).
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5.4 Application to the Cournot model of a duopoly

5.4.1 A better formulation of the Nash-Cournot model as a QEP

In this section, we want to:

• remind the usual presentation of the Cournot model of a duopoly as a QEP problem

with a unique shared constraint;

• show again that the Cournot example can be better modelled as a quasi equilibrium

problem than as an equilibrium problem;

• interpret, in this Cournot context, the linear and inexact regularization method as

a perturbation of the unit costs of the duopolists that can lead to a possibly better

convergence (at least in some simulations). This is a striking result because it allows,

each period, an inexact knowledge of the unit cost that becomes better and better

as time evolves if the error is controlled.

Given the new presentation of the Cournot model as a QEP formulated in Section 5,

with the same unit costs of production c1 = c2 = c > 0, the new presentation of the

Cournot model as a QEP with different units costs (c1, c2) > 0, c1 ̸= c2 comes easily if

we remind the definition of the selling price p(Q),

p(Q) =

 a−Q ∈ R, if 0 ⩽ Q ⩽ a,

0, if Q > a.

When the unit costs of production of the duopolists are not the same, the margins of the

duopolists are not the same. They represent the difference mi = p− ci, i = 1, 2 between

the price of the good and their unit costs of production and selling. Then, the profits of

the duopolists are

πi(xi, x−i) = pxi − cixi = (p− ci)xi = mixi, i = 1, 2. Thus, their profits are,

π1 =

 [(a− c1 − x2) − x1] x1, if x1 + x2 ⩽ a,

−c1x1, if x1 + x2 > a,

and

π2 =

 [(a− c2 − x1) − x2] x2, if x1 + x2 ⩽ a,

−c2x2, if x1 + x2 > a.
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5.4.2 New viability conditions

As seen in Section 5, the first viability condition for the existence of a duopoly is that

the selling price p = a− (x1 + x2) ⩾ 0 is non-negative. Two new viability conditions that

impply this first one require that margins must be non-negative, i.e.,

m1 = α1(x2) − x1 ⩾ 0 and m2 = α2(x1) − x2 ⩾ 0,

with α1(x2) = a− c1 − x2 and α2(x1) = a− c2 − x1. If not, all profits would be negative.

As previously, each duopolist maximizes his profit, taking as given what the other

duopolist produces at the status quo x = (x1, x2) ∈ R2
+. Then, they solve the unconstraint

interrelated programs

max
{
π1(y1, x2) =

[
α1(x2) − y1]y1,y1 ∈ X1 = R+

}
and

max
{
π2(x1,y2) =

[
α2(x1) − y2]y2,y2 ∈ X2 = R+

}
.

Their resolutions provide the unique equilibrium

x∗ = (x∗,1, x∗,2) =
1
3
(
a+ c1 − 2c2,a+ c2 − 2c1)

with a+c1−2c2 > 0 and a+c2−2c1 > 0. If c1 = c2 = c > 0, then x∗,1 = x∗,2 = 1
3(a−c).

5.5 The Cournot model as a QEP

A QEP presentation

Set of profitable deviations (moves). Two viability constraints are that the

profit of each duopolist must not be negative when they try to move unilaterally from

the status quo profile of productions x = (x1, x2) ∈ R2
+ to another profile of production

y = (y1,y2) ∈ R2
+. These constraints are, y1 ∈ C1(x2) and y2 ∈ C2(x1) where,

C1(x2) =
{
y1 ∈ R+,π1(y1, x2) =

[
α1(x2) − y1]y1 ⩾ 0

}
and

C2(x1) =
{
y2 ∈ R+,π2(x1,y2) =

[
α2(x1) − y2]y2 ⩾ 0

}
.
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These two sets represent the sets of unilateral profitable deviations (y1, x2) and (x1,y2)

from the status quo x. Then, these two viability (profitability) constraints can be written

y1 ∈ C1(x2) =
{
y1, 0 ⩽ y1 ⩽ α1(x2)

}
and

y2 ∈ C2(x1) =
{
y2, 0 ⩽ y2 ⩽ α2(x1)

}
.

That is, y ∈ C(x) if y = (y1,y2) and C(x) = C1(x2)× C2(x1). More explicitly, y ∈ C(x)

is equivalent to 0 ⩽ y1 ⩽ α1(x2) = a − c1 − x2 and 0 ⩽ y2 ⩽ α2(x1) = a − c2 − x1. If

c1 = c2 = c > 0, then y ∈ C(x) is equivalent to 0 ⩽ y1 ⩽ a−c−x2 and 0 ⩽ y2 ⩽ a−c−x1.

Several viability constraints: making non-negative profits at the status quo. As

a consequence, the condition x∗ ∈ C(x∗) means that it can be viable (profitable) to stay

at the status quo, because each duopolist makes a non-negative profit. More explicitly,

x∗ ∈ C(x∗) is equivalent to 0 ⩽ x∗,1 ⩽ α1(x∗,2) = a− c1 − x∗,2 and 0 ⩽ x∗,2 ⩽ α2(x∗,1) =

a − c2 − x∗,1, i.e., π1(x∗,1, x∗,2) ⩾ 0 and π2(x∗,1, x∗,2) ⩾ 0. This refers to the existence of

two viability conditions instead of one when c1 = c2 = c > 0.

Equilibrium: stability of the status quo with different moving constraints. The

status quo x∗ = (x∗1, x∗,2) is an equilibrium if it is not profitable to deviate unilaterally

from it, i.e., iff,

π1(y1, x∗,2) ⩽ π1(x∗1, x∗,2), ∀y1 ∈ C1(x∗,2)

and

π2(x∗,1,y2) ⩽ π2(x∗,1, x∗2), ∀y2 ∈ C2(x∗,1).

A better QEP formulation of the Cournot equilibrium problem. It becomes:

find x∗ ∈ C(x∗) such that f(x∗,y) ⩾ 0, for all y ∈ C(x∗) with a Nikaido–Isoda function

f(x,y) =
[
π1(x1, x2) − π1(y1, x2)

]
+
[
π2(x1, x2) − π2(x1,y2)

]
.

5.6 The advantages of a QEP formulation

A richer concept of equilibria with viability constraints

A richer concept of the status quo as an equilibrium emerges. It takes care of the fact

that
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(i) if you stay, it is viable to stay because each duopolist makes a non-negative profit.

This is a viability constraint that the traditional presentation ignores. See above

the usual presentation;

(ii) if you change, a change will not be profitable for each duopolist if the other duopolist

does not change. This is a stability constraint. The traditional presentation uses

it, but it fails to take care of the local and moving constraints y1 ∈ C1(x∗,2); and

y2 ∈ C2(x∗,1). This highlights the important idea that if you think that what the

other will do will constraint your choice set, you must take care of this fact. The

traditional presentation misses this point.

A better understanding of the generalized Nash equilibrium problem

Existence of QEP. Particular cases of quasi-equilibrium problems are generalized

Nash equilibrium problems; see, for instance, Dutang [11] and Fischer et al. [15] for

games with shared constraints. Our simple and new Cournot perspective helps to better

understand the intuitions behind sufficient conditions given for the existence of equilibria

for games with shared constraints.

A linear and inexact regularization of a QEP leads to a striking interpretation

of the Cournot model

Linear regularization. Our work propose the linear regularization (4.20) of the

“loss to deviate from the status quo" function f(x,y). In the Cournot example

f(x,y) =
[
π1(x1, x2) − π1(y1, x2)

]
+
[
π2(x1, x2) − π2(x1,y2)

]
and

⟨e,y− x⟩ = e1(y1 − x1) + e2(y2 − x2).

Then, for duopolist 1,

π1(y1, x2) = (a− c1 − x2)y1 − (y1)2

and

π1(x1, x2) = (a− c1 − x2)x1 − (x1)2,

give π1(y1, x2) − π1(x1, x2) = (a− c1 − x2)(y1 − x1) − [(y1)2 − (x1)2]. Then,

π1(y1, x2) − π1(x1, x2) − e1(y1 − x1) =
[
a− (c1 + e1) − x2] (y1 − x1) −

[
(y1)2 − (x1)2

]
.
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The same for duopolist 2:

π2(x1,y2) − π2(x1, x2) − e2(y2 − x2) =
[
a− (c2 + e2) − x1] (y2 − x2) −

[
(y2)2 − (x2)2

]
.

The QEP presentation of the Cournot model becomes: find x∗ ∈ X such that x∗ ∈ C(x∗)

with f(x∗,y) ⩾ 0 for all y ∈ C(x∗).

A striking interpretation. The previous calculations show that a linear and inex-

act perturbation represents a perturbation of the unit cost of each duopolist. This is a

marvellous result in behavioral sciences. Indeed, our work shows that a linear and inexact

perturbation allows:

(i) to a better computational performance than the exact one;

(ii) to the inexact knowledge of the unit costs which can become better and better as

time evolves a controlled error.



Chapter 6

Conclusion

In this work, we propose three variations of the proximal point method in the context

of quasi-equilibrium. In the first one, we propose an exact algorithm that makes use of

the Bregman distance in Rn space. We study its convergence analysis, obtaining some

classic results derived from the proximal point method. To a test problem, we compare its

performance, illustrating the superiority of Bregman functions over the Euclidean norm.

For the inexact versions, we consider two variations of the proximal point method

designed to solve quasi-equilibrium problems in Hilbert spaces. In one of these variations,

we consider an approximate regularized bifunction, while in the other, we take a point

within a neighborhood of the exact solution. We provide convergence analyses for these

methods under standard assumptions and illustrate their performance relative to the exact

method.

Moreover, we propose an original and intuitive interpretation of the Cournot duopoly

model as a quasi-equilibrium problem, which is more rigorous than its formulation as an

equilibrium problem.

Regarding future work, our plan is to continue our research on quasi-equilibrium prob-

lems. We aim to explore works that rely on more relaxed assumptions compared to those

used in this study. Furthermore, we aim to continue our study of extending algorithms

from equilibrium problems to the quasi-equilibrium context.
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